
Introducing Compiler Semantics into Large Language Models as
Programming Language Translators: A Case Study of C to x86 Assembly

Shuoming Zhang1, 3, Jiacheng Zhao1, 3, Chunwei Xia2,
Zheng Wang2, Yunji Chen1, 3, and Huimin Cui*1, 3

1SKLP, Institute of Computing Technology, CAS
{zhangshuoming21s,zhaojiacheng,cyj,cuihm}@ict.ac.cn

2University of Leeds, UK
{C.Xia, Z.Wang5}@leeds.ac.uk

3University of Chinese Academy of Sciences, Beijing, China

Abstract

Compilers are complex software containing
millions of lines of code, taking years to de-
velop. This paper investigates to what extent
Large Language Models (LLMs) can replace
hand-crafted compilers in translating high-level
programming languages to machine instruc-
tions, using C to x86 assembly as a case study.
We identify two challenges of using LLMs for
code translation and introduce two novel data
pre-processing techniques to address the chal-
lenges: numerical value conversion and train-
ing data resampling. While only using a 13B
model, our approach achieves a behavioral ac-
curacy of over 91%, outperforming the much
larger GPT-4 Turbo model by over 50%. Our
results are encouraging, showing that LLMs
have the potential to transform how compila-
tion tools are constructed.

1 Introduction

There is growing interest in using Large Lan-
guage Models (LLMs) for software engineering
tasks (Zhang et al., 2023b) like code retrieval (Li
et al., 2022b,a), completion (Svyatkovskiy et al.,
2020; Guo et al., 2023) and translation (Armengol-
Estapé and O’Boyle, 2021; Armengol-Estapé et al.,
2023). The training data of many LLMs, including
CodeLlama (Rozière et al., 2022), Codex (Chen
et al., 2021), and GPT4 (OpenAI et al., 2023) con-
tains code examples. However, these models are
not explicitly trained for code translation. Con-
sequently, they are prone to errors during code
translation (Armengol-Estapé et al., 2023). On the
other hand, LLMs trained in natural language cor-
pus have demonstrated impressive results in natural
language understanding (Brown et al., 2020; Pruk-
sachatkun et al., 2020). As such, it is interesting to
know if LLMs can learn to compile code.

This paper investigates the feasibility of using
Large Language Models to translate a high-level

*Corresponding Author

programming language to machine instructions, a
problem known as neural compilation (Armengol-
Estapé and O’Boyle, 2021). Traditionally, this
is performed by a manually crafted compiler that
usually takes many person-years of compiler en-
gineers’ time to build. Recent developments in
LLMs have shown promising results in leverag-
ing pre-trained Transformer models for tasks like
decompilation (e.g., translating assembly code to
C programs) (Armengol-Estapé et al., 2023) and
program synthesis (Szafraniec et al., 2023). How-
ever, few works use LLMs as a compilation tool to
translate a high-level programming language into
low-level assembly instructions. We hypothesize
that LLMs may be able to learn from examples
generated from other means, e.g., code synthesis,
but the learnt model can directly produce the trans-
lated or even optimized code. Our work seeks to
bridge this gap by taking C to x86 assembly as a
case study.

A key challenge we face is managing the seman-
tic gap between high-level languages optimized
for human usability and low-level languages de-
signed for hardware executions. This gap often
manifests in a lack of direct correspondence be-
tween elements of the source and target languages.
For instance, some commonly used data structures
and programming constructs in C, such as struct
and complex for-loop, do not have single equiv-
alent x86 instructions. Similarly, C uses identi-
fiers for variables, while assembly instructions use
stack and memory addresses or registers. As a
single line of C code can be translated into a vary-
ing number of assembly instructions, learning the
translation from C to assembly would require dif-
ferent amounts of training samples depending on
the complexity of the mapping, making it difficult
to construct a balanced training corpus.

To overcome the aforementioned challenges, we
leverage Low-Rank Adaptation (LoRA) (Hu et al.,
2021a) to fine-tune a pre-trained 13B CodeLlama

model (Rozière et al., 2022). However, using the
standard natural language training pipeline, our ini-
tial attempt yields a model with poor performance
for C-to-assembly translations. After a close exam-
ination of the failure cases, we propose to introduce
compiler semantics as two key data pre-processing
techniques to enhance the trained model: symbolic
interpretation for numerical value conversion and
switch-case normalization for switch-case inconsis-
tency. Furthermore, we propose an automatic com-
piler semantics guided refinement learning frame-
work to improve the fine-tuned model iteratively.
Our framework automatically resamples the distri-
bution of semantic mapping samples and synthe-
sizes the failure test cases in the validation set to
improve the quality of the model training data.

We perform a large-scale evaluation on over 57k
executable C programs and compare them against
the state-of-the-art large language model GPT-4
Turbo. We verify the correctness of the generated
x86 assembly code by executing them against unit
test cases. Experimental results show that our neu-
ral compiler generates code that is more accurate
than all competing baselines. Compared to GPT-4
Turbo, our approach improves the translation accu-
racy by over 50%, from 40.85% to 91.88%.

Our main contributions are:

• We propose an approach to introduce compiler
semantics into the LLM as two new data pre-
processing methods: symbolic interpretation
and switch-case normalization. Experimen-
tal results demonstrate that the two proposed
methods allow the LLM to increase the num-
ber of correct translations by over 30%.

• We implement an automatic refinement aug-
mentation framework targeting the biased
samples of different semantics in the corpora,
where the long-tails under-fit. The framework
resamples the semantics distribution by syn-
thesizing incorrect cases, to obtain improved
accuracy on the long tails.

• We can achieve 91.88% IO accuracy when
translating C to x86 assembly and we believe
it’s the highest accuracy when comparing with
SOTA works.

2 Problem Statement

We target the problem of machine translating high-
level programs(specifically, in the C language) into
semantically equivalent low-level programs(in x86

assembly) with limited bilingual parallel corpora.
One way to generate the training data is to use an
existing compiler, such as GCC, as an oracle to
generate semantically aligned assembly code from
C language corpora. However, there are other op-
tions like search-based code synthesis techniques
(Hu et al., 2021b; Hu, 2022). Since training data
generation is performed offline, the overhead of
generating the corpora does not affect the end user
of the LLM. Our approach is also useful in porting
a pre-trained LLM to other hardware architecture,
e.g., fine-tuning an LLM trained on C-x86 samples
to generate ARM instructions from C programs. In
this case, the pre-trained model can be fine-tuned
on a small set of C-to-ARM-assembly samples gen-
erated through code synthesis, reducing the cost
of targeting compilers for a new hardware archi-
tecture. Besides, Aligning different programming
language other than C to x86 assembly is also pos-
sible, which we discuss in Appendix A.3.

Definition 1 There is a high-level programming
language Lhigh and a low-level programming lan-
guage Llow, each is an infinite set of valid pro-
gram strings. There exists a unary relation ⇀ from
Lhigh to Llow. Given two monolingual corpora
Lhigh ⊂ Lhigh and Llow ⊂ Llow, the problem is to
learn a translator F such that ∀x ∈ Lhigh, (∃u ∈
Llow, x ⇀ u) → (x ⇀ F (x)).

Our main challenge in this work is the larger se-
mantic gap between C and x86 assembly compared
to translation between high-level codes like C-to-
CUDA (Wen et al., 2022) and Java-to-Python (Roz-
ière et al., 2020). For example, like for-loop and
if-else semantics, the translation must learn a pos-
teriori to generate jump instructions and corre-
sponding labels to express the original control
flows. According to (Rice, 1953), there is no set
of rules that can accurately model the relation ⇀,
because it is undecidable whether two programs
are semantically-equivalent. Instead, we will use
behavioral-equivalent to approximate.

3 Methodology

Our approach for translating high-level C code to
low-level x86 assembly code targets generating
semantically equivalent code in best efforts. In this
work, we target non-optimized code generation,
using the result given by the GCC compiler as a
reference to train our model.

Numeric Conversion

LLM difficult

= 0x3e2000000.15625f =

x86 numericC numeric

float func(float x) {

 float temp;

 temp = x + 0.15625f;

 return temp;
}

.globl func

.type func, @function
func:
.LFB0:
 .cfi_startproc
 addss .LC0(%rip), %xmm0
 ret
 .cfi_endproc
.LC0:
 .long 1042284544 # 0x3e200000

Figure 1: Numerical Conversion Feature Between C
And x86

3.1 Dataset Preprocssing

To train a model, we first construct a C-x86-
aligned bilingual corpora. We use benchmarks
in the AnghaBench (Da Silva et al., 2021) and
ExeBench (Armengol-Estapé et al., 2022) suites
to obtain a large C corpora codebase. Then, we
filtered C code with non-standard library dependen-
cies and used GCC (version 9.4.0) with the “-O0"
option to compile each program into x86 assembly.

After the initial preprocessing, we obtain a se-
mantically aligned C-x86 bilingual corpora for
training. However, a model trained directly on
compiler-generated corpora does not perform well.
After manually inspecting the generation errors, we
find the following challenges.

Numerical Value Conversion. A significant
challenge in the translation between C and x86
assembly languages lies in the conversion of nu-
merical values, which underscores the semantic dif-
ferences between these languages. As depicted in
Figure 1, In C, floating-point and double-precision
values can be represented as literals, such as 1.0
or 3e-5. However, in most compiler designs, these
numerical literals need to be converted to an in-
ternal representation following the IEEE-754 stan-
dard (IEEE, 1985). This conversion process is rule-
based and straightforward to implement. Yet, Large
Language Models (LLMs) exhibit a notable weak-
ness in this task, achieving a mere 3.8% accuracy
on NumericBench, a large scale mathematical solv-
ing dataset derived from Math23K (Wang et al.,
2017). This result underscores a critical limitation
of LLMs in handling numerical computations.

To mitigate this limitation, we implement an ef-
fective data pre-processing method called symbolic
interpretation, where we guide the LLM to gener-
ate symbolic expressions of the float/double values,

if-else for while do-while switch1 switch2
0

50000

100000

150000

200000

250000

300000

350000

Sa
m

pl
e

Nu
m

334077

188551

128037

22366 17381 7078

Keyword Distribution
Sample Num

Figure 2: Long-tail Keyword Distribution of ExeBench

which are subsequently processed by a rule-based
interpreter. By delegating the actual numerical con-
version to the interpreter, this method effectively
circumvents the LLM’s inherent weakness in nu-
merical value conversions, thereby improving the
overall accuracy of the translation process.

int x;
int main() {

switch(x) {
case 0: ...
case 1: ...

...
case N: ...
default: ...

}
return 0;

}

Listing 1: C Switch1

int x;
int main() {

{
if(x == 0) ...
else if(x==1) ...
...
else if(x==N) ...
else ...

}
return 0;

}

Listing 2: C Switch2

main:
movl x(%rip), %eax
cmpl $N, %eax
ja .Ldefault
leaq .LJT0(%rip), %rdx
movslq (%rdx,%rax,4), %rax
addq %rdx, %rax
notrack jmp *%rax

.LJT0:
.long .L0-.LJT0

...
.long .LN-.LJT0

.L0:
...

...

.Ldefault:
...

Listing 3: x86 Switch1

main:
movl x(%rip), %eax
cmpl $N, %eax
ja .Ldefault
cmpl $0, %eax
je .L0
cmpl $1, %eax
je .L1

...
je .LN
jmp .Ldefault

.L0:
...

.L1:
...

...

.Ldefault:
...

Listing 4: x86 Switch2

Switch-case Statement Inconsistency. Another
kind of significant translation error lays on "switch-
case" statement, where we observe that our base-
line model generates inconsistently in two styles,
where the compiler generated corpora messed them
up. Listing 1 depicts the standard switch-case state-
ment in C, and Listing 3 is its corresponding x86
assembly generated by GCC, where the cases are
stored into a jump table, and using indirect jump
instruction to control the jump target. However,
switch-case statement can also be implemented by

WorkloadsC Corpora

WorkloadsX86
Corpora

Data Preprocess Evaluator

C Codebase
LLM

Synthesizer

Enhanced
Corpora

Symbolic Reasoning

1.0 à float(1.0)
0.15625 à float(0.15625)

Long-tail resampling

Switch Normalization

Switch2Switch2Switch1

BLEU/IO CA@1

HYP REF

Eval C Corpora

Challenge3:
Numeric
Conversion

Challenge2:
Sema
Inconsistency

Challenge1:
Long-tails

Refinement Augmentation Loop

LLM

Data Augmentation

Train Eval C X86

Symbolic
Interpreter

IEEE-754

Figure 3: Data Augmentation Framework Overview

if-else logic, where Listing 2 depicts its semantic
equivalent code in C, and Listing 4 is its x86 assem-
bly, where multiple comparison instructions and
conditional jump instructions are used. By default,
GCC generates the first type when cases are larger
than threshold 4, and the second type otherwise,
other compilers like Clang and MSVC also sharing
this behavior with different thresholds. As depicted
in Figure 2, we observe 7078 samples belong to
the first and 17381 samples belong to the second
in our initial training corpora, and their ratio on the
whole corpora is also small, with 1.0% and 2.6%
respectively. Comparing to other control keyword
in C, which is clearly long-tailed.

To tackle the switch-case semantic inconsistency,
we normalize the semantic of the switch-case state-
ment to the if-else style in Listing 4, where we
re-generate the x86 assembly from GCC compiler
using compiler flag "-fno-jump-tables".

3.2 Dataset Augmentation

As already emphasized in the switch-case handling,
the biased distribution of each semantic translation
in the training corpora is a big challenge. Consider-
ing there are other long-tails besides switch-cases
that also performs poorly, we need an automatic
data augmentation method to improve the model’s
accuracy on these long-tails. This is crucial and
necessary because the LLM is only trained on lim-
ited corpora. If the input is few or even none in
the corpora, it will translate poorly without any
surprise.

Inspired by (Madaan et al., 2023), we construct
an automatic refinement data augmentation frame-
work as depicted in Figure 3, where the model is
first trained on corpora from the previous method,

and evaluated through multiple metrics, where we
collect on the low-metric samples where we as-
sume the model under-fits to learn them. Then we
synthesize more samples from the incorrect sam-
ples to improve the distribution. we choose to use
mistral-7B (Jiang et al., 2023a) as the synthesizing
LLM in our implementation, where we instruct the
LLM to analyze, categorize, and generate ten times
more similar samples.

With more long-tail samples been synthesized,
we re-sample the corpora by adding synthesized
samples to it, creating a re-sampled corpora that
better represents the long-tail problems. Finally,
we re-train the model on this re-sampled dataset.
The whole above process can be iteratively exe-
cuted, where more under-fitting long-tails can be
discovered, re-sampled, and improved.

This refinement framework allows the model to
better learn how to handle these long-tailed sam-
ples, leading to improved accuracy in the generated
low-level code. We provide examples illustrating
its validity in the case studies.

3.3 Fine-Tuning

Machine translation has evolved significantly with
the advent of neural machine translation (NMT),
where models are trained on large corpora of text to
learn the nuances of language translation. The gen-
eral principle of machine translation, as pioneered
by (Rozière et al., 2020), involves two key stages:
pretraining and fine-tuning. Initially, models are
pretrained on monolingual corpora to learn lan-
guage features. Subsequently, they are fine-tuned
on paired corpora to guide the translation between
two languages.

We employ Low Rank Adaptation (Hu et al.,

Datasets Size Tok (C) Tok (x86)

Train 679665 107 391
Train-Num 40000 168 594

Eval 57552 110
ExeBench 35704 108
Numeric 21104 111
Switch 744 237

Table 1: Dataset Details

2021a), one of the most well-known Parameter-
Efficient Fine-Tuning methods, to adapt LLMs to
our translation task. LoRA modifies a small subset
of the model’s weights by decomposing the weight
changes into two smaller matrices, which are then
fine-tuned. This approach allows us to bypass the
initial pre-training phase typical in machine trans-
lation, as LLMs are already pretrained on extensive
monolingual corpora. We use codellama-13b (Roz-
ière et al., 2022) as our foundation model.

Similar to the construction of the training cor-
pora, we construct the evaluation corpora solely
on C, where we choose from the IO evaluation
part of ExeBench (Armengol-Estapé et al., 2022)
and Math23K (Wang et al., 2017), to evaluate the
model’s translation accuracy, where the former rep-
resents general purpose code and the latter repre-
sents numerical computations. More detailed cor-
pora components can be found in the following
Evaluation Section.

4 Evaluation

4.1 Dataset
To evaluate our proposed code translation methods,
we perform a series of experiments on function-
level C programs. We first finetune the codellama-
13b foundation model to perform C-to-x86 code
translation task, where we use dataset derived from
ExeBench (Armengol-Estapé et al., 2022) and Ang-
haBench (Da Silva et al., 2021), two large scale
dataset of compilable C functions, we first apply
data cleaning, where we filtered oversized func-
tions(we limit the size to 2048 tokens in our set-
tings), and other features we are not going to cover
like inline assembly. Finally we get a 680K size
training dataset for baseline training. In the nu-
merical value conversion preprocessing part, we
establish a 40k numerical adjusted corpora to fine-
tune the model. For evaluation part, we construct
a 57K size dataset with I/O behavioral checks. As

for the numerical conversion and switch-case gen-
eration challenges, we also categorize specified
subsets in the evaluation, where a 21K numeric-
specific subset and a 744 switch-specific subset are
evaluated individually. Table 1 shows the details of
the dataset we used in training and evaluation.

4.2 Setup and Metrics
We set up the experiment on a Ubuntu 22.04 server
with Intel Xeon Platinum 8358 CPU and 4 x A800
80GB GPUs. We begin with the codellama-13b-
instruct checkpoint from huggingface hub as our
foundation model. We then directly apply LoRA
finetuning with the 680K training corpora to learn
the C-to-x86 translation task, which we considered
as the Baseline model. Later we apply the two
data pre-processing methods, switch-case normal-
ization or/and numerical value conversion, to adjust
the training corpora, and re-train on the foundation
model to get the Switch enhanced model, Numeric
enhanced model and ALL enhanced model. We
also use more foundation LLMs as second base-
lines to compare with, where we majorly evaluate
on GPT-4-Turbo Other foundation LLMs like GPT-
4o, GPT-4o-mini, Llama-3.1-70B, Mixtral-8x7B,
and code LLMs like DeepseekCoder, are also eval-
uated.

During the training process, we use lora_r =
128, lora_alpha=32, lora_dropout=0.05 in the
LoRA modules, where we attach all Q, K, V, O in
the model for training. We use the sum of token-
level cross-entropy loss with teacher-forcing as the
loss function, which is on par with (Rozière et al.,
2020). We use AdamW(Kingma and Ba, 2014)
as the optimizer and apply a cosine learning rate
that top at 1e-4 in training. The training process is
performed fully in float16 precision, where we train
the model for 1 epoch in 70 hours using 4xA800
80GB GPUs.

We evaluate the above models on the 57,552
functions evaluation dataset. We also construct
the 21,104 size numeric-specified and the 744 size
switch-specified subsets from the full dataset. Then
we perform end-to-end evaluation on these datasets,
which also serves as an ablation study. We examine
each generated function in x86 assembly by linking
it with the driver code that called the function to
obtain an executable, then performing Input/Out-
put(IO) correctness checks. We use greedy genera-
tion in the generation process, so the IO accuracy
can also be viewed as CA@1 or Pass@1 in other
machine translation tasks.

Overall ExeBench-main ExeBench-switch NumericBench
0

20

40

60

80

IO
 A

cc
ur

ac
y(

%
) 60.0

88.7

50.86

3.8

62.22

91.6

66.57

4.0

90.23 89.94

53.91

92.691.88 91.72

67.77

93.4

40.85

57.2

42.55

8.5

IO Accuracy Results
Baseline
Switch
Numeric
All
GPT

Figure 4: IO Accuracy Results

4.3 End-to-End Evaluation

Figure 4 summarizes the empirical end-to-end re-
sults ablating different methods and comparing
with directly finetuned CodeLlama-13B as baseline
and GPT-4-Turbo, the foundation LLM baseline.
More LLM baselines can be found in Table 2. As
the results suggest, the baseline model performs
fairly well, achieving 60% overall accuracy and
88.7% in ExeBench, which outperforms all foun-
dation LLM baselines. More detailed breakdowns
of its wrong translations show it majorly falls into
the following types:

Generating wrong numerical values. We cap-
ture all the functions within the evaluation dataset,
where there exists numerical value initialization,
and categorize them into a numerical dataset, Nu-
mericBench for breakdown. We find out that the
baseline model can only generate 3.8% of Numer-
icBench correctly, and most of these happen-to-be-
correct values are values with high frequency in
the dataset, like 1.0 and 0.0. This breakdown in-
deed reveals a crucial drawback of the LLM-based
machine translation method. We then apply the
symbolic interpretation method on the dataset pre-
processing stage, which significantly improved the
generation accuracy, rising from 3.8% to over 90%.

Generating wrong labels and jump tables. We
evaluate the evaluation dataset and collect those
with incorrect execution behaviors, where we find
many in switch-case generations. After analyzing
the generated assembly, we find out their transla-

tion is very likely in an underfitting manner. We
also find out the training dataset is inconsistent with
the semantic of switch-case code generation, when
cases numbers are above the threshold, they use
indirect jump on the jump table in the generated
assembly, while the if-else style in the others. This
inconsistent behaviour is by default open for our or-
acle compiler GCC even in O0 optimization level,
where dataset makers can hardly notice.

We further perform categorization of control-
flow statements on the training dataset, which is
clearly summarized in Figure 2, where the two
types of switch-case generation are both rare in
corpora, counting for 2.6% and 1.0% respectively.
This categorization result depicts a long-tail dis-
tribution in the training dataset, where the model
under-fits the switch-case statement generation,
and the inconsistency on switch-case statement gen-
erations may further confuse the model.

To tackle this problem, we perform switch-
case normalization, where we enable the GCC op-
tion "-fno-jump-tables" to unify the generation be-
haviours on switch-case, and re-train the model. As
illustrated in Figure 4, the normalization of switch-
case semantic improves the switch-case translation
accuracy from 50.86% to 66.57%, which shows the
effectiveness of the augmentation method.

Other types of wrong generations, which in-
clude wrong generation of very long function log-
ics, wrong generation of stack operation, wrong
C-struct offset calculation, and wrong generation
on rare samples, like AVX intrinsics, etc. More de-

Models Accuracy

GPT-4-Turbo 57.2%
GPT-4o 68.9%
GPT-4o-mini 50.5%
DeepseekCoder 71.0%
Llama-3.1-70b 67.0%
Mixtral-8x7b 31.0%
Ours 91.7%

Table 2: More baseline models’ accuracy comparison in
ExeBench, all models are prompted to perform 0-shot
neural compilation.

tailed evaluation results, like translation accuracy
across code length can be found in Appendix B
due to page limits.

In the end-to-end evaluation, we tackle the first
two kinds of errors. By augmenting with both nu-
merical conversion and switch-case normalization,
we successfully improve the overall I/O Accuracy
to 91.88%, which improves drastically from the
baseline model. To compare with, GPT-4-Turbo
can only achieve 40.85% I/O Accuracy even with
careful prompting.

5 Case Study

We conduct case studies to demonstrate how to
overcome the challenges using data augmentation
methods to learn C-to-x86 translation.

The first case study demonstrate a function that
need float/double numerical value conversion. In
x86 language, float/double immediate numbers can
not be encoded in instructions directly, and modern
compilers like GCC save them in binary format
following the IEEE-754 standard. So as long as
the program exists numerical initialization, there
are numerical conversions during the translation
process, where LLMs perform poorly. As de-
picted in Figure 5, direct value conversion using im-
plicit IEEE-754 rule makes LLMs hard to predict,
where the baseline models are very likely to gener-
ate wrong numbers. By delegating the numerical
conversions from LLMs to rule-based interpreters,
where we augment the model to generate symbolic
expressions instead of direct guessing, LLMs dele-
gate the numerical conversion to rule-based inter-
preters, which can handle their conversions well,
so that the numerical handling drawback of LLMs
is efficiently mitigated.

The second case study depicted in Figure 6
shows the challenge of switch-case generation,

float func()
{

float costA = 6.0;
float costB = 0.125;
float cash = 50.0;
float numA = 4.0;
float numB;
float temp;
temp = costA * numA;
temp = cash - temp;
numB = temp / costB;
return numB;

}

func:
...
movss .LC0(%rip), %xmm0
movss %xmm0, -20(%rbp)
...

.LC0:
.long 1086324736 ; 6.0

.LC1:
.long 1040187392 ; 0.125

.LC2:
.long 1112014848 ; 50.0

.LC3:
.long 1082130432 ; 4.0

Figure 5: Case Study 1: Numerical Conversion

int color_char_to_attr(char c)
{

switch (c)
{

...
case 'R':

return (4);
case 'G':

return (5);
case 'B':

return (6);
...

}
return (-1);

}

color_char_to_attr:
...
subl $66, %eax ; 'B'
cmpl $16, %eax ; 'R' - 'B'
ja .L2
leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
notrack jmp *%rax
.section .rodata

.L4:
.long .L2-.L4
.long .L2-.L4
.long .L2-.L4
; ... repeated pattern

Figure 6: Case Study 2: Switch Generation

where the jump-table style generation are hard to
learn for LLMs. The baseline model fails in the
generation of jump table items, causing repeated
patterns until the maximum generation length. By
leveraging the if-else style data augmentation, the
model has learned to treat switch-case statements
as if-else style, where if-else corpus are on the head
of keyword distribution with hundreds of thousand
samples comparing to the rare long-tails, the de-
ficient learning of switch-case generation is also
mitigated.

The last case study shows how our refinement
framework improving the long-tails performance.
As depicted in Figure 7, AVX instructions are the
SIMD extension in x86 assembly language, and
is encapsulated as AVX intrinsics to be used in C
language.

Recalling Figure 3, we introduce the refinement
framework to augment the incorrect generations,
which is inspired by (Madaan et al., 2023). Initially,
there are no AVX-related samples in the training
corpora at all, where the model without any sur-
prise translate incorrectly without apriori. Then the
incorrect AVX sample is captured by the evaluator
together with other incorrect samples. we then use
LLM to analyze the C code, and synthesize more
based on several rules as prompts to generate more
C samples closely related to the incorrect cases.

void foo(float *x, *y, *o) {
xx = _mm256_load_ps(x);
yy = _mm256_load_ps(y);
zz = _mm256_add_ps(xx, yy);
_mm256_store_ps(o, zz);

}

foo:
vmovaps (%rdi), %ymm0
vmovaps (%rsi), %ymm1
vaddps %ymm1, %ymm0
vmovaps %ymm0, (%rdx)
ret

Figure 7: Case Study 3: AVX Intrinsics Learning

We use mistral-7B(Jiang et al., 2023a) as the syn-
thesizer LLM in our implementation. Finally, the
sythesized augmented C corpora of incorrect sam-
ples is added back to the training dataset, where
retraining/finetuning can be performed depending
on the need.

Back to the case itself, a 10x synthesizing is suf-
ficient enough to learn a new feature with simple
semantic pattern, like the _mm256_add_ps intrin-
sic in the case, which simply generates a vaddps
instruction. Such LLM’s learning ability of align-
ing C and x86 semantics is very impressive, which
shows the few-shot learning potential in the lan-
guage translation task. Although more complex
patterns need more cases to learn well, luckily, the
refinement framework can be executed iteratively,
which can resample the corpora based on the gen-
eration accuracy, so that more complex cases can
get more samples to be learned.

6 Related Work

Code Translation aims to translate a piece of code
(usually a function or method) into another pro-
gramming language. Early studies like (Nguyen
et al., 2015) uses traditional statistical machine
translation method. Neural-based method like
(Chen et al., 2018) starts to be dominant, and cap-
ture the tree structure of programming languages.
The emergence of pre-trained language models of
code, such as CodeBERT (Feng et al., 2020) and
CodeT5 (Wang et al., 2021), has further improved
the state of code translation. Large Language Mod-
els(LLMs) (OpenAI et al., 2023; Rozière et al.,
2022) have continued this trend, showing promise
in code translation task. However, the above ap-
proaches usually require fine-tuning on parallel
corpora, which is often scarce.

Data augmentation techniques have been exten-
sively used and found effective in machine trans-
lation tasks, which served as a solution to the
scarcity of parallel corpora. Transcoder (Roz-
ière et al., 2020) first propose back translation
approach to learn unsupervised code translation,
where the back-translation process also gener-

ates an automatic parallel corpora augmentation
method. Transcoder-ST (Roziere et al., 2021),
CodeXGlue (Lu et al., 2021), BabelTower (Wen
et al., 2022) and CMTrans (Xie et al., 2023) also
follow this approach, to obtain parallel corpora
during the learning process. Besides direct genera-
tion, (Szafraniec et al., 2023) explores an IR-in-the-
middle approach, while (Tang et al., 2023; Ahmad
et al., 2023) both introduce an intermediate code
summary stage, to improve the code translation
accuracy.

To construct a balanced corpora in limited size
in monolingual language is also challenging, it is
naturally in a long-tailed distribution for different
aspects of code semantics. where neural models
tend to perform low accuracy on the tails due to
lack of samples. (Zhout et al., 2023) reveals that
LLMs can perform between 30% to 254% worse
in long-tailed cases, where the model under-fits
them. Inspired by the survey of long-tailed learn-
ing (Zhang et al., 2023a), we establish a refinement
augmentation method, where long-tailed C samples
are recognized in the evaluation process via met-
rics, then analyzed, synthesized by another pow-
erful LLM, compiled by GCC to obtain parallel
samples, finally augmented the corpora with more
long-tailed knowledge.

Cross Level Code Translation. On high-
level code to low-level code translation researches,
(Armengol-Estapé and O’Boyle, 2021) first gives
a try of using neural machine translation on this
scenario. (Guo and Moses, 2022) further stud-
ies on C-to-LLVM IR translation. However, they
only perform limited investigations on the meth-
ods, and their results are still on the preliminary
stage. There are more related works on the reverse
process, to recover high-level code from low-level
code (Fu et al., 2019; Cao et al., 2022; Armengol-
Estapé et al., 2023).Unlike the difficulty on seman-
tic mapping to low level code in our challenges,
their challenges mainly are on optimization recov-
ery and type inference, while the semantic recovery
is relatively simpler.

7 Conclusion

Machine translation from high-level language to
low-level machine instructions is difficult. Even
using advanced LLMs can not reach high accuracy
directly. By implementing symbolic interpretation
and switch-case normalization, two novel data pre-
processing methods, we overcome numerical value

conversion and switch-case semantic inconsistency,
two significant challenges in C-to-x86 language
translation.

To improve the accuracy on long-tailed samples
where the model under-fits to learn, we propose
an automatic refinement augmentation framework
to obtain improved accuracy on the long-tails by
using synthesizing method on incorrect cases.

Finally we achieve state-of-the-art IO accuracy,
over 91%, when translating C-to-x86 on a large-
scale evaluation dataset. Comparing to LLM-only
method(GPT-4-Turbo, 40.85%), and finetuning-
only baseline method(59.87%), the methods show
great efficiency. More importantly, we show LLMs
can perform well in C-to-x86 neural compilation
task, and potentially other language pairs.

In conclusion, these advancements demonstrate
the potential of combining compiler-semantic-
guided data pre-processing and augmentation tech-
niques with LLMs to significantly enhance ma-
chine translation accuracy, paving the way for fu-
ture innovations in tasks like neural compilation.

8 Limitations

We identify three main limitations in our work.
First, We currently use LoRA finetuning on open-

weighted LLMs as our learning method instead of
full-training due to resource constraints. We cur-
rently only research on C-to-x86, one of the most
representative machine translation tasks across se-
mantic levels. But the ideas of automatically aug-
menting the dataset with more balanced distribu-
tion, offloading numerical conversions from LLMs
and unifying necessary semantics in the corpora
are also applicable to other similar translation tasks.
We investigate the generality of our methods on dif-
ferent assembly languages in Appendix A.1, which
shows that the methods proposed in this work are
applicable to a large scope of assembly languages
in modern architectures.

Second, introducing code optimization is another
research topic in code translation, where the model
not only translates the source code to target code,
but also performs optimizations. We don’t target
optimizations because the translation problem is
not studied well yet. Like the numerical conversion
problem in our unoptimized translation settings,
there will be more similar problems that LLMs
need to adjust to. We consider this as future work.

Third, our model learns the translation process
by performing supervised fine tuning on foundation

model, so there will be need for aligned C-x86 code
corpora, which can be generated in multiple ways.
We use an oracle compiler to generate code pairs
for training in this work, as for other possible ways
to translate on other language to other assembly,
we discuss it in Appendix A.3.

9 Ethical Impact

In this work, we majorly study the effectiveness of
using supervised fine-tuning on LLMs to translate
C language to x86 language, where the researching
subject is highly overlapped with compilers. How-
ever, this work doesn’t seek to replace compilers
but as an assistant for agile compiler developments.

As for the machine translation community, this
work is to our knowledge the first to study the
empirical effort on how to translate a high level
programming language to assembly well, and what
are the challenges.

We don’t find any clear ethical problems during
our research. All datasets and models we use in this
work is publicly available. Although unlikely but
possibly, the model fine-tuned for assembly code
may contain vulnerability for execution. However,
techniques like sandbox isolation (Wu et al., 2024)
can be helpful to mitigate such concerns where the
code is executed in an isolated environment.

10 Societal Impact

In this work, by finetuning LLMs as neural code
translators in C-to-x86 compilation and achieving
over 91% behavioral accuracy, we validate that
LLMs can be potentially used for machine transla-
tion tasks from a high-level language to a low-level
language. We expect more findings to the research
problem of neural compilation. For example, prob-
lems like scalability, optimization and linguistical
breakdowns in neural compilation, can be seen as
future work.

Acknowledgements

This work is partially supported by National Nat-
ural Science Foundation of China (U23B2020,
62232015, 62302479) and Innovation Project
E361010 of ICT, CAS. We would like to thank
Zhicheng Li, Zhongcheng Zhang, Lei Qiu and Pro-
fessor Xiaobing Feng from SKLP, ICT, CAS as
well as Guanyu Qu and Yu Xu for discussions and
proofreading throughout this research.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2023. Summarize and generate
to back-translate: Unsupervised translation of pro-
gramming languages. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL 2023,
Dubrovnik, Croatia, May 2-6, 2023, pages 1520–
1534. Association for Computational Linguistics.

Jordi Armengol-Estapé and Michael FP O’Boyle. 2021.
Learning c to x86 translation: An experiment in neu-
ral compilation. arXiv preprint arXiv:2108.07639.

Jordi Armengol-Estapé, Jackson Woodruff, Alexander
Brauckmann, José Wesley de Souza Magalhães, and
Michael FP O’Boyle. 2022. Exebench: an ml-scale
dataset of executable c functions. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 50–59.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cum-
mins, and Michael FP O’Boyle. 2023. Slade: A
portable small language model decompiler for opti-
mized assembler. arXiv preprint arXiv:2305.12520.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mihai Budiu and Chris Dodd. 2017. The p416 program-
ming language. ACM SIGOPS Operating Systems
Review, 51(1):5–14.

Ying Cao, Ruigang Liang, Kai Chen, and Peiwei Hu.
2022. Boosting neural networks to decompile opti-
mized binaries. In Proceedings of the 38th Annual
Computer Security Applications Conference, pages
508–518.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.

Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. In
Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18,
page 2552–2562, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Chris Cummins, Volker Seeker, Dejan Grubisic,
Mostafa Elhoushi, Youwei Liang, Baptiste Roziere,
Jonas Gehring, Fabian Gloeckle, Kim Hazelwood,
Gabriel Synnaeve, et al. 2023. Large language
models for compiler optimization. arXiv preprint
arXiv:2309.07062.

Anderson Faustino Da Silva, Bruno Conde Kind,
José Wesley de Souza Magalhães, Jerônimo Nunes
Rocha, Breno Campos Ferreira Guimaraes, and Fer-
nando Magno Quinão Pereira. 2021. Anghabench:
A suite with one million compilable c benchmarks
for code-size reduction. In 2021 IEEE/ACM Inter-
national Symposium on Code Generation and Opti-
mization (CGO), pages 378–390. IEEE.

Maxim Enis and Mark Hopkins. 2024. From llm to
nmt: Advancing low-resource machine translation
with claude. arXiv preprint arXiv:2404.13813.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages.

Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-
dong Tian, Farinaz Koushanfar, and Jishen Zhao.
2019. Coda: An end-to-end neural program decom-
piler. Advances in Neural Information Processing
Systems, 32.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian Mcauley. 2023. LongCoder: A long-range pre-
trained language model for code completion. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 12098–12107.
PMLR.

Zifan Carl Guo and William S. Moses. 2022. Enabling
transformers to understand low-level programs. In
2022 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–9.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021a. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

https://doi.org/10.18653/V1/2023.EACL-MAIN.112
https://doi.org/10.18653/V1/2023.EACL-MAIN.112
https://doi.org/10.18653/V1/2023.EACL-MAIN.112
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
https://proceedings.mlr.press/v202/guo23j.html
https://proceedings.mlr.press/v202/guo23j.html
https://doi.org/10.1109/HPEC55821.2022.9926313
https://doi.org/10.1109/HPEC55821.2022.9926313

Jingmei Hu. 2022. Improving Assembly Synthesis via
Interaction and Parallelism. Ph.D. thesis, Harvard
University.

Jingmei Hu, Priyan Vaithilingam, Stephen Chong,
Margo Seltzer, and Elena L Glassman. 2021b. As-
suage: Assembly synthesis using a guided explo-
ration. In The 34th Annual ACM Symposium on User
Interface Software and Technology, pages 134–148.

IEEE. 1985. Ieee standard for binary floating-point
arithmetic. ANSI/IEEE Std 754-1985, pages 1–20.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes. 2007. The evolution of lua. In
Proceedings of the third ACM SIGPLAN conference
on History of programming languages, pages 2–1.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b.

Nan Jiang, Chengxiao Wang, Kevin Liu, Xiangzhe Xu,
Lin Tan, and Xiangyu Zhang. 2023b. Nova+: Gener-
ative language models for binaries.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Haochen Li, Chunyan Miao, Cyril Leung, Yanxian
Huang, Yuan Huang, Hongyu Zhang, and Yanlin
Wang. 2022a. Exploring representation-level aug-
mentation for code search. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4924–4936, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Xiaonan Li, Daya Guo, Yeyun Gong, Yun Lin, Ye-
long Shen, Xipeng Qiu, Daxin Jiang, Weizhu Chen,
and Nan Duan. 2022b. Soft-labeled contrastive pre-
training for function-level code representation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 118–129, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. 2015. Divide-and-conquer approach for
multi-phase statistical migration for source code (t).
In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages
585–596.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Is-
abella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David

https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.1985.82928
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2311.13721
http://arxiv.org/abs/2311.13721
https://doi.org/10.18653/v1/2022.emnlp-main.327
https://doi.org/10.18653/v1/2022.emnlp-main.327
https://doi.org/10.18653/v1/2022.findings-emnlp.9
https://doi.org/10.18653/v1/2022.findings-emnlp.9
https://doi.org/10.1109/ASE.2015.74
https://doi.org/10.1109/ASE.2015.74

Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2023. Gpt-4 technical report.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231–5247, Online. Association for Computational
Linguistics.

Henry Gordon Rice. 1953. Classes of recursively enu-
merable sets and their decision problems. Trans-
actions of the American Mathematical society,
74(2):358–366.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2022.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Baptiste Roziere, Jie M Zhang, Francois Charton,
Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. 2021. Leveraging automated unit tests
for unsupervised code translation. arXiv preprint
arXiv:2110.06773.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2020,
page 1433–1443, New York, NY, USA. Association
for Computing Machinery.

Marc Szafraniec, Baptiste Rozière, Hugh Leather,
Patrick Labatut, François Charton, and Gabriel Syn-
naeve. 2023. Code translation with compiler repre-
sentations. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.

Marc Szafraniec, Baptiste Roziere, Hugh James Leather,
Patrick Labatut, Francois Charton, and Gabriel Syn-
naeve. 2022. Code translation with compiler repre-
sentations. In The Eleventh International Conference
on Learning Representations.

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin
Wang, Derry Wijaya, Jie Chen, and Yoon Kim. 2023.
Explain-then-translate: an analysis on improving pro-
gram translation with self-generated explanations. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 1741–1788, Singapore.
Association for Computational Linguistics.

Guido Van Rossum et al. 2007. Python programming
language. In USENIX annual technical conference,
volume 41, pages 1–36. Santa Clara, CA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://openreview.net/pdf?id=XomEU3eNeSQ
https://openreview.net/pdf?id=XomEU3eNeSQ
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/D17-1088
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859

Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianx-
ing Xu, Yanlin Tang, Yongwei Zhao, Xing Hu, Zi-
dong Du, Ling Li, et al. 2022. Babeltower: Learning
to auto-parallelized program translation. In Inter-
national Conference on Machine Learning, pages
23685–23700. PMLR.

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu,
Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2023.
Refining decompiled c code with large language mod-
els. arXiv preprint arXiv:2310.06530.

Yuhao Wu, Franziska Roesner, Tadayoshi Kohno, Ning
Zhang, and Umar Iqbal. 2024. Secgpt: An execution
isolation architecture for llm-based systems. arXiv
preprint arXiv:2403.04960.

Yiqing Xie, Atharva Naik, Daniel Fried, and Carolyn
Rose. 2023. Data augmentation for code translation
with comparable corpora and multiple references. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 13725–13739, Singa-
pore. Association for Computational Linguistics.

Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan,
and Jiashi Feng. 2023a. Deep long-tailed learning: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b.
A survey on language models for code. CoRR,
abs/2311.07989.

Xin Zhout, Kisub Kim, Bowen Xu, Jiakun Liu, Dong-
Gyun Han, and David Lo. 2023. The devil is in
the tails: How long-tailed code distributions impact
large language models. In 2023 38th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 40–52. IEEE.

A Discussions

Due to page limits, we discuss some interesting
problems and challenges we find in our work as
follows.

A.1 Method Availability
We majorly discuss the C-to-x86 machine transla-
tion in this paper, and developed symbolic interpre-
tation method on floating value conversion problem
and switch-case normalization on x86 assembly.
People may have concerns about the generality of
the methods we proposed. In fact, we analyzed
and studied the usability of the symbolic interpreta-
tion and switch-case normalization method on three
other trending architectures, including ARM, MIPS
and RISCV. We will explain the availability of our
methods by answering the following research ques-
tions(RQs).

RQ1: How does numerical values stored in
each architecture? What are the challenges? In
most cases, floating-point values are stored through
IEEE-754 standard (IEEE, 1985), and thus these
values are facing the either explicit or implicit con-
version during the compilation process. Integer
values, although not facing the conversion chal-
lenge, each architecture has different instruction
bit preserved to use immediate values, for example,
MIPS architecture only allows a 12-bit integer off-
set in its arithmetic instructions. Values that over
12-bit field should be stored in memory, and use
load instruction to load them.

As far as we studied in x86, immediate values
overflow is very rare in our test cases, because
most immediate values are capable of fitting in the
instruction format in x86, since x86 is CISC and
allows multiple instruction format.

However, when studying RISC-like architec-
tures, like ARM, MIPS and RISCV, there will be
new problems in immediate values usage. We have
discovered a few. For example, integer values need
to be guarded whether they can fit in RISC instruc-
tion format. Because these knowledge are implicit
in text during training and the model is very hard
to learn through compiler generated pairs, where
some of them use immediate values directly in the
arithmetic instructions(can fit) and some choose to
load in memory first(can not fit).

As the answer to RQ1: We identify that the
floating-point conversion is necessary in these ar-
chitectures just like x86. Besides, we even find more
challenges in the immediate integer value usage in
RISC-like architectures. Since our major research
language is x86 assembly in this work, we report
them to the community and plan to solve them as
future work.

RQ2: How can numerical conversion be ap-
plied to these architectures?

We will only use float values for illustration since
double values are similar. In x86 architecture, the
floating values are stored in IEEE-754 converted
integer values in memory by compilers, which is
hard for the model to learn the conversion rule
currently. We choose to offload the conversion to
a rule-based converter so that the model can leave
the value conversion and keep the original float
values as output. To achieve this, we also need
to preprocess on the training dataset to teach the
model to generate a format that will be recognized
by the rule-based converter, and do not perform
conversion.

https://doi.org/10.18653/v1/2023.findings-emnlp.917
https://doi.org/10.18653/v1/2023.findings-emnlp.917
https://doi.org/10.48550/ARXIV.2311.07989

When the target language is not x86, we need to
study the availability of the numerical conversion
method itself. Luckily, for numerical values, both
ARM, MIPS and RISCV use similar format in the
assembly language, just like x86. We use the float
value 1.0f as an example. Listing 5 shows how
float x is stored in memory and being loaded in
x86. Similarly, Listing 6, Listing 7 and Listing 8
is the corresponding format in MIPS, ARM and
RISCV respectively.

In the instruction part, all these assemblies just
use symbol x, and the value itself is stored in
the data section where x is assigned with value
1.0(0x3f800000). Since the pattern is almost iden-
tical to x86, we can surely apply the numerical
conversion method on floating values in these ar-
chitectures.

1 ...
2 movss x, %xmm0
3 ...
4 x:
5 .long 0x3f800000

Listing 5: x86 float

1lui $1, %hi(x)
2lwc1 $f2, %lo(x)($1)
3...
4x:
5.4byte 0x3f800000

Listing 6: MIPS float

1 ...
2 adrp x8, _x@PAGE
3 ldr s1, [x8, _x@PAGEOFF]
4 ...
5 _x:
6 .long 0x3f800000

Listing 7: ARM float

1...
2lui a1, %hi(x)
3lw a1, %lo(x)(a1)
4...
5x:
6.word 0x3f800000

Listing 8: RISCV float

RQ3: How can switch-case normalization be
applied to these architectures?

These architectures all support use either jump
table style or if-else style to implement switch-case
statement in C, just like x86 architecture. So the
problem is also back to compiler implementations.
Both GCC and Clang generate jump table style
assembly when the cases are many and generate
if-else style when small in all these architectures,
even in -O0 optimization level. So it is difficult
for the model to learn the implicit generation rules
within limited switch-case corpora. Fortunately,
we can use "-fno-jump-tables" option to align the
compiler behaviors despite of case numbers. So
the normalization method is applicable to these
architectures.

In general, the problems of storing numerical val-
ues and aligning switch case statements in assem-
bly languages are similar to x86 language we stud-
ied. Although some languages may not use switch
statements, for example, Lua (Ierusalimschy et al.,
2007) and Python(version <3.10) (Van Rossum
et al., 2007), and some architectures like P4 (Budiu

and Dodd, 2017) may only use integer values,
where our proposing methods are not applicable.
However, the machine translation problem is also
simpler and straightforward to implement, so as our
answer to RQ2 and RQ3: Both numerical conver-
sion and switch-case normalization methods can
be applied to multiple different architectures.

A.2 Impact on Large Language Model
evolution

Our method uses supervised fine-tuning(SFT) on
LLM with parallel code corpora in C and x86 to
learn the machine translation process. However,
neither SFT nor LLM is necessary for the machine
translation task. We categorize current approaches
into the following three categories.

• Language Modeling + SFT: Works like
(Rozière et al., 2020) and (Szafraniec et al.,
2022) use this methodology. Majorly they use
smaller models like transformers (Vaswani
et al., 2017). They first learn the model on
monolingual corpora through language mod-
eling, so that the base model learns the syntax
and semantic of each language itself. Then
they perform supervised fine-tuning(SFT) on
language pairs, where the translation rules are
learned. This is a natural thought on code
translation and is the mainstream approach.

• Pretrained Model + SFT: As generative AI
entered Large Language Model era, the foun-
dation model itself learns huge amount of
code corpora, which frees the need to perform
language modeling on monolingual corpora,
and developers can directly perform super-
vised fine-tuning on the foundation model, to
teach the model about the translation process.
Our work belongs to this category, as well as
other works like (Wong et al., 2023; Cummins
et al., 2023; Jiang et al., 2023b).

• Pretrained Model only: For the most ad-
vanced LLMs (OpenAI et al., 2023; Enis and
Hopkins, 2024), which are trained on enor-
mous amount of code in each language, in-
cluding assembly language like x86 and ARM.
They already learn the syntax and semantic
of each language, so they can also perform
machine translation on these languages di-
rectly. During our evaluation using GPT4(gpt-
4-0613), although the performance is worse

than supervised fine-tuned models, their per-
formance is still impressive, and some GPT4
generated translation has clearly learned the
compilation process. There are potentials
to use fine-tuning free methods, like Chain-
of-Thought (Wei et al., 2022) and Retrieval-
augmented generation (Lewis et al., 2020), to
achieve better performance on code transla-
tion and gain great flexibility than SFT meth-
ods.

As Large Language Models keep evolving, we
can look forward to more empirical methods on
code translations, where utilizing the LLM on its
understanding on code, can not only perform code
translation tasks, but more complex ones like code
optimizations, automatic bug solving, etc. Back to
the neural compilation task itself, stronger LLMs
may be able to generate more reasonable transla-
tion, and even generalize to translations on either
new programming language features or new archi-
tecture features, which are truly helpful to compiler
development and programming language designs.

A.3 Dependency on existing compilers

RQ4: Without an available compiler from one
language to another, is the method still available?

To answer this question, we first revise on where
the compilers are used in our work. We use com-
pilers as oracle to generate semantically aligned
C-x86 corpora, where C-x86 compilers are pow-
erful and near 100% correct. However, to obtain
another programming language-x86 corpora, we
don’t necessarily need an existing compiler. We
provide two possibllities.

A.3.1 Bridging to other code translation
This work majorly study on C-x86 code translation,
a typical neural compilation task. In order to repli-
cate our approach for other language pairs, there
will be more challenges, the most important one is:
bilingual neural-compilation corpora for some lan-
guages can be scarce, especially for non-compiled
langauges like Python. Below is our discussions:

First, if there is a compiler between two lan-
guages, we can always obtain the parallel corpora
for these two languages. If not, we can seek to find
an intermediate language for bridging other code
translations. Plenty of work on code translation
(Rozière et al., 2020; Wen et al., 2022; Szafraniec
et al., 2023) already provided methods to align high
level programming languages’ semantics, which

c cpp rust
Languages

0

200

400

600

800

1000

1200

1400

1600

LO
Cs

 in
 a

ss
em

bl
y

Assembly LOCs of different languages

Figure 8: Assembly LOCs of different languages

makes them capable of generating a behavioral
equivalent bilingual corpora between high level
languages, for example, Python and C. By using
an intermediate language, performing neural code
translation first, our supervised fine-tuning(SFT)
method is also applicable to learn Python-x86 com-
pilation by compiling the C code to x86 assembly.

We also examine the choice on the intermedi-
ate language, because we can use other compiled
language compilers to generate assembly as well.
In comparison, Java, Python and JavaScript are
interpreted languages that not suitable for compila-
tion scenario. Other compiled languages, like C++
and Rust, are introducing more complex features
like name mangling, implicit function execution
and heavy standard library code injection, which is
causing the generated assembly more complex and
difficult to be learned.

For example, name mangling is initially a tech-
nique in compiler implementation to avoid symbol
name conflict, however, its mangling rule is not
easy for LLM to learn. However, we think it is
solvable by similar techniques like symbolic inter-
pretation for numerical values in this paper.

Other features, however, are more difficult to
treat. As depicted in Figure 8, semantically equiva-
lent C++ and Rust programs generate much longer
assembly code compared to C, and many features
are implicit functions like constructors and tem-
plates. These features are syntax sugar to program-
mers, but they are hard for either compiler imple-
mentation or neural model learning.

To compare with, C language has a minimal
standard library, no name mangling mechanism and
is explicit in its function execution, which makes
C more friendly to be used as both the studied

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300 input_len
output_len

Figure 9: Model’s I/O Length Distribution in ExeBench

language and the intermediate to connect assembly
with other high-level languages.

A.3.2 Do we really need supervised
fine-tuning?

Besides, with LLMs becoming more powerful, the
need on using SFT for code translation is also ques-
tionable. If a LLM understands every line of code
in each language, it will be able to align code in
different languages, even one language is high level
C and the other is low level x86 assembly.

Our evaluation results on GPT4 (gpt-4-0613) is
quite impressive to reach over 40% accuracy in one-
shot learning. We believe that with more powerful
LLM and more prompting techniques (Wei et al.,
2022; Lewis et al., 2020), there are more potentials
for LLMs in code translation, especially neural
compilation.

B Evaluation Details

RQ5: How does the model perform on long or
short cases?

During the evaluation process, we evaluate the
model’s behavioral accuracy through IO test. How-
ever, around 37% of the IO cases provided by
ExeBench(Armengol-Estapé et al., 2022) is not
GCC-executable. We analyze the reasons, and
some are caused by non-standard library usage,
which is fixable, while some are wrong cases in its
code patterns, which is hard to fix. In the end, we
filtered these GCC-not-compilable cases.

We also analyze the statistics of translating on
ExeBench. The distribution on Input/Output length
is as depicted in Figure 9, where the generated x86
assembly length is about 3.56x more than the input
C length. The average C length is 108 token and
the generated x86 length is 384 token.

200 400 600 800 1000 1200
Length

0

10

20

30

40

50

Fr
eq

ue
nc

y

Failed
Passed

Figure 10: Input Length Distribution in Switch

0 500 1000 1500 2000 2500 3000
Length

0

5

10

15

20

25

Fr
eq

ue
nc

y

Failed
Passed

Figure 11: Output Length Distribution in Switch

Further analysis on the generation result shows
that LLM tends to generate higher accuracy when
the code size is small, and lower when code is large.
This is natural since LLM is probabilistic and as
the code size increases, the more likely errors may
occur. The Switch case subset in ExeBench has
237 token size in C and 1032 token size in x86,
which is double larger than the average ExeBench,
while its generation accuracy is also lower, only
67.7% comparing to 91.72% in ExeBench.

As depicted in Figure 10 and Figure 11, Long
input are more likely to fail in translation compar-
ing to short input. However, the accuracy for very
long input is still considerable, as the passed cases
almost cover the failed cases in Figure 10, even for
cases where the code size exceeds 1000 token.

RQ6: Why use 2048 as the context length and
filtering size for finetuning?

In comparison, many existing code translation
work limits their code size to much smaller values
like 128 or 512, either because of the model’s capa-
bility or the training cost. In our settings, we choose
the context size to 2048, which is significantly
larger than previous work. 2048 is a tradeoff size
for us to finetune on codellama-13b with 4xA800
80GB using a 64 batch size in total, which balanced
training cost and performance. Theoretically we
can increase the context size as long as it doesn’t
exceed the size of the foundation model(16384).

	Introduction
	Problem Statement
	Methodology
	Dataset Preprocssing
	Dataset Augmentation
	Fine-Tuning

	Evaluation
	Dataset
	Setup and Metrics
	End-to-End Evaluation

	Case Study
	Related Work
	Conclusion
	Limitations
	Ethical Impact
	Societal Impact
	Discussions
	Method Availability
	Impact on Large Language Model evolution
	Dependency on existing compilers
	Bridging to other code translation
	Do we really need supervised fine-tuning?

	Evaluation Details

