2506.02929v1 [cs.AR] 3 Jun 2025

arXiv

SCIENCE CHINA
Information Sciences

« POSITION PAPER -

Large Processor Chip Model

Kaiyan Chang, Mingzhi Chen, Yunji Chen", Zhirong Chen, Dongrui Fan,
Junfeng Gong, Nan Guo, Yinhe Han, Qinfen Hao, Shuo Hou, Xuan Huang, Pengwei Jin,
Changxin Ke, Cangyuan Li, Guangli Li, Huawei Li, Kuan Li, Naipeng Li,
Shengwen Liang, Cheng Liu, Hongwei Liu, Jiahua Liu, Junliang Lv, Jianan Mu, Jin Qin,
Bin Sun, Chenxi Wang, Duo Wang, Mingjun Wang, Ying Wang~, Chenggang Wu,
Peiyang Wu, Teng Wu, Xiao Xiao, Mengyao Xie, Chenwei Xiong, Ruiyuan Xu,
Mingyu Yan, Xiaochun Ye, Kuai Yu, Rui Zhang, Shuoming Zhang & Jiacheng Zhao

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

Abstract Computer System Architecture serves as a crucial bridge between software applications and the underlying hard-
ware, encompassing components like compilers, CPUs, coprocessors, and RTL designs. Its development, from early mainframes
to modern domain-specific architectures, has been driven by rising computational demands and advancements in semiconductor
technology. However, traditional paradigms in computer system architecture design are confronting significant challenges, in-
cluding a reliance on manual expertise, fragmented optimization across software and hardware layers, and high costs associated
with exploring expansive design spaces. While automated methods leveraging optimization algorithms and machine learning
(ML) have improved efficiency, they remain constrained by a single-stage focus, limited data availability, and a lack of compre-
hensive human domain knowledge. The emergence of large language models (LLMs) offers transformative opportunities for the
design of computer system architecture and search paradigms. By leveraging the capabilities of LLMs in areas such as code gen-
eration, data analysis, and performance modeling, the traditional manual design process can be transitioned to a machine-based
automated design approach. To harness this potential, we present the Large Processor Chip Model (LPCM), an LLM-driven
framework aimed at achieving end-to-end automated computer system architecture design. The development of LPCM is struc-
tured into three levels: (1) Human-Centric, which assists in code generation and parameter tuning; (2) Agent-Orchestrated,
facilitating cross-layer optimization through toolchain integration (e.g., LLVM, Gem5) and the autonomous execution of sub-
tasks; and (3) Model-Governed, achieving full automation through the synthesis of hardware-software co-design, simulation, and
iterative refinement. This paper utilizes 3D Gaussian Splatting (3D GS) as a representative workload and employs the concept of
software-hardware collaborative design to examine the implementation of the LPCM at Level 1, demonstrating the effectiveness
of the proposed approach. Furthermore, this paper provides an in-depth discussion on the pathway to implementing Level 2
and Level 3 of the LPCM, along with an analysis of the existing challenges.

Keywords Large Processor Chip Model, LLMs, Automated Design, 3D Gaussian Splatting

Citation Large Processor Chip Model. Sci China Inf Sci, for review

1 Introduction

Computer System Architecture is a fundamental discipline in the realms of computer science and en-
gineering, concentrating on the design, organization, and performance optimization of computer systems.
It comprises multiple components including compilers, CPUs, coprocessors, and RTL designs. From a
software perspective, computer system architecture follows the layered architecture design philosophy
and establishes multi-layer abstraction to bridge the gap between upper-layer applications and underly-
ing physical hardware, providing a stable development environment for applications. From a hardware
perspective, the evolution of computational demands in contemporary applications, coupled with advance-
ments in algorithmic, continuously challenge the performance boundaries of underlying hardware, driving
sustained innovation in underlying hardware technologies. As a bridge between software applications and

* Corresponding author (email: cyj@ict.ac.cn, wangying2009@ict.ac.cn)
1 All authors contributed equally to this work and are listed in alphabetical order.


https://arxiv.org/abs/2506.02929v1

Sci China Inf Sci 2

hardware technologies, computer system architecture fundamentally influences the performance, energy
efficiency, reliability, and scalability of computing systems. The evolution and innovation in computer
system architecture have become key drivers in advancing computing technology, playing a essential role
in fostering technological innovation and addressing diverse computational demands.

1.1 The Evolution of Design Paradigms in Computer System Architecture

Since the advent of the first electronic computer ENTAC, in the 1940s, computer system architecture
has undergone a structural evolution from a single form to a highly diversified landscape. From the
1940s to the 1960s, mainframe computers represented by ENTAC dominated the field of computing.
With the advent of microprocessors and breakthroughs in integrated circuit technology, the 1970s to
1990s saw the widespread adoption of microcomputers and personal computers. The physical size of
computing devices shrank to about 0.25 square meters, costs dropped to several hundred US dollars,
and computing performance reached hundreds of millions of operations per second. During this period,
computer architectures became increasingly complex due to functional generalization and performance
demands, making hierarchical design and hardware-software co-optimization mainstream. To improve
development efficiency, high-level languages such as C and compiler technologies advanced rapidly, freeing
programmers from the burden of direct hardware manipulation. On the hardware side, considerations
extended beyond arithmetic units to include CPU microarchitecture design elements like pipelines, multi-
level caches, 1/0O systems, and bus architectures.

Entering the 21st century, especially after the resurgence of deep learning algorithms in 2012, the rapid
development of emerging applications and advancements in semiconductor technology have shifted the
focus from general-purpose architectures to domain-specific computer system [1]. Despite Moore’s Law
witnessed the reductions of the chip manufacturing cost, the escalating demand for specialized hardware
tailored to a wide array of application requirements such as energy efficiency constraints, real-time perfor-
mance requirements, has led to a substantial rise in chip development costs. However, current computer
system architecture design not only heavily relies on domain experts but also suffers from long design cy-
cles, making it difficult to meet the demands of rapidly evolving applications. Moreover, computer system
architecture design encompasses a comprehensive process from high-level software interfaces to low-level
hardware implementations, including compiler design, operating system optimization, hardware-software
partitioning, micro-architecture design, RTL design, simulation, and verification, among other critical
stages. This results in a vast design space with multi-objective optimization challenges, where traditional
reliance on manual expertise severely constrains design performance and outcomes.

Automated computer system architecture design technology is an effective approach to enhancing the
performance and efficiency of system architecture design. Automated design leverages various optimiza-
tion algorithms, particularly those rooted in artificial intelligence, to rapidly explore the design space and
achieve hardware-software co-optimization. This approach improves design performance, shortens design
cycles, reduces development costs, and better meets the demand for customized system architectures in
emerging fields such as artificial intelligence and high-performance computing. As a result, automated
computer system architecture design is not only a key solution to current design challenges but also a sig-
nificant driver of future computing technology innovation. Throughout the evolution of computer system
architecture, the field has transitioned from manual design to automated design, with the capabilities of
automation continuously strengthened by advancements in machine learning technologies, particularly
deep learning. The evolution of automated design can be divided into three main categroies.

Traditional Chip Logic Design Based on EDA (Electronic Design Automation) Tools Tradi-
tional chip logic design based on EDA tools marks the starting point of automated design, signifying the
transition from purely manual design to automated processes. Designers decompose and design internal
functional modules of computer system architectures according to requirement specifications, translate
these designs into hardware description languages (HDLs), and then utilize EDA tools for synthesis,
verification, and analysis to generate logic circuits and ultimately physical layouts [2] [3] [4] [5] [6]. The
introduction of EDA tools has enabled complex chip design tasks to be carried out more efficiently and
accurately, significantly advancing the development of integrated circuits and computer system architec-
tures. While traditional chip logic design based on EDA tools laid the foundation for modern automated
computer system architecture design, this stage of design remained heavily reliant on manual rules and
expertise, with the level of automation being highly limited.



Sci China Inf Sci 3

Optimization-Based Methods Optimization-based methods represent a shift from traditional EDA-
assisted automation to more intelligent and refined design optimization processes. At this stage, designers
introduce advanced mathematical optimization techniques to explore a broader design space for optimal
solutions while ensuring design accuracy and manufacturability. For example, design space exploration
(DSE) employs heuristic search methods [7] [8] to identify the best trade-offs among performance, power,
and area during architectural design and microarchitecture optimization. Logic synthesis methods gen-
erate optimized logic circuits through Boolean optimization [9], technology mapping [10], and Bayesian
optimisation [11]. In the physical design phase, methods like placement and routing [12] and timing
optimization [13] are used to optimize the physical implementation of processors [14]. These advance-
ments have not only significantly improved design efficiency and precision but also laid the groundwork
for subsequent machine learning-based design methods. However, these optimization-based approaches
still rely heavily on human expertise, exhibit limited capabilities in handling complex designs, and often
require substantial computational resources and optimization time, which can impact the effectiveness of
the optimization process.

Machine Learning-Based Methods Machine learning-based methods represent a paradigm shift
in automated design, transitioning from rule-driven and optimization-driven approaches to intelligent,
data-driven methodologies. By learning from historical design data, machine learning can automatically
generate new design solutions and even predict and address issues that are challenging for traditional
optimization methods. For instance, techniques such as random forests [15] [16] and neural networks [17]
have been integrated into design space exploration to predict the performance, power, and area of different
configurations, thereby accelerating the exploration process and more efficiently identifying near-globally
optimal solutions. Furthermore, reinforcement learning and neural networks (NNs) have been applied
to physical design. In placement, reinforcement learning algorithms iteratively discover optimal micro
placement strategies to minimize signal delay and congestion [18] [19]. NNs, on the other hand, contribute
to performance prediction of timing, power, and congestion [20]. While these techniques apply machine
learning methods to boost EDA efficiency or performance, they do not fundamentally transform the
conventional design flow.

1.2 The key challenges preventing the evolution of design paradigms

Despite the significant advancements brought by machine learning methods to the automated design of
computer system architectures, several challenges and issues remain.

First, computer system architecture encompasses a comprehensive design flow from high-level software
interfaces to low-level hardware implementation, including stages such as compiler design, operating
system support, processor architecture design, circuit design, physical design, verification, and evaluation.
These stages are interconnected and mutually constrained, requiring a holistic consideration of their
characteristics to achieve globally optimal designs. Nevertheless, existing automated design approaches
are typically limited to single-stage optimization and cannot simultaneously handle multiple design stages,
making end-to-end cross-stage optimization unattainable, and consequently restricting overall system
performance improvement potential.

Second, traditional human-driven design processes have accumulated a wealth of design experience and
rules, which provide valuable insights for achieving automation. However, current mainstream machine
learning methods primarily rely on automatically extracting patterns from data, failing to effectively
incorporate human design expertise and rules. Moreover, computer system architecture design involves
multiple stages, each with its own unique design experiences and rules. The complexity and diversity
of domain knowledge pose significant challenges for integrating human design knowledge into automated
methods.

1.3 Large language models bring new opportunities

Recently, the emergence of large language models (LLMs) and agent systems has prompted researchers to
explore the potential for automating the design of computer system architectures. These methods focus
on utilizing LLMs to transform natural language descriptions of functional requirements or documenta-
tion into appropriate computer system architecture designs, which can lower the barriers to hardware
development and improve the efficiency of research and development efforts.



Sci China Inf Sci 4

Research focusing on LLM-driven technical solutions can be categorized into several key areas. First,
studies targeting the generation of processor components concentrate on designing various functional
modules of processors. Due to the scarcity of data in the processor design domain, these works propose
diverse methods for constructing processor design datasets such as ChipNeMo [21], RTLCoder [22] and
fine-tune large language models such as BetterV [23] on these datasets to obtain specialized hardware
code generation models capable of producing Verilog or VHDL code. Second, research aimed at designing
comprehensive frameworks focuses on building system-level automated design workflows. These works im-
plement complex or system-level hardware architecture design such as ChatEDA [24] and ChipGPT [25],
through modules such as task decomposition and composition, code verification and feedback, perfor-
mance optimization, and search strategies. Additionally, these methods often incorporate automatic
feedback and correction mechanisms, using simulation or formal verification tools to detect errors in the
generated code and iteratively optimize code quality. Finally, research targeting analysis and verification
tools utilizes large language models to understand, analyze, and summarize hardware code, serving as
verification tools to automatically identify complex errors and security issues. Building on this, methods
for automatically repairing erroneous code or optimizing power, performance, and area (PPA) have been
proposed, e.g., AssertLLM [26] and RTLFixer [27]. These advancements demonstrate the potential of
LLMs in automating and enhancing various aspects of hardware design, from component generation to
system-level frameworks and verification tools.

Despite the significant potential demonstrated by large language models (LLMs) in computer system
architecture automated design, existing approaches still suffer from several critical limitations. Firstly,
current methods primarily focus on individual design stages, such as RTL-level hardware code generation
or code verification, and fail to achieve a multi-level, holistic design process that spans from high-level
requirements to low-level implementation. Moreover, they lack the capability to enable co-design across
software and hardware layers, including compilers, operating systems, and processor design. This limita-
tion results in a lack of end-to-end co-optimization in the design flow, making it challenging to achieve
global optimization across performance, power, and area (PPA) objectives. Secondly, the correctness of
the design outcomes remains difficult to guarantee. Although LLMs can generate syntactically correct
hardware code, the complexity of hardware design and the stringent timing and resource constraints often
lead to logical errors or functional defects in the generated code. As a result, manual verification or formal
tools are still required to correct these issues. These shortcomings restrict the practical application of
existing LLM-based automated design methods in real-world engineering scenarios.

1.4 Towards next-generation paradigm: Large Processor Chip Model

To harness the powerful capabilities of large language models (LLMs) for the automated design of com-
puter system architectures, we propose the Large Processor Chip Model (LPCM), which is built on LLM
technology and domain-specific data from computer system architecture. LPCM aims to achieve end-to-
end automated design of computer system architectures. The design of LPCM offers unique advantages
and holds significant importance for realizing automated computer system architecture design. First,
leveraging the robust knowledge-learning capabilities of LLMs, LPCM can extract and utilize human
expertise and knowledge in system architecture design from vast datasets, such as rules and heuristics in
compiler optimization, microarchitecture design, and physical implementation. This capability enables
LPCM to quickly grasp complex design logic and apply it to automated design workflows. Second, when
the model’s parameter size and data volume reach a certain scale, LLMs exhibit emergent abilities, leading
to qualitative leaps in performance and behavior. Building on the emergent capabilities of LLMs, LPCM
can perform multi-level, cross-domain co-optimization by simultaneously considering design constraints
and objectives across multiple layers, such as compilers, operating systems, hardware architectures, and
physical implementation. This enables LPCM to generate system architecture designs that surpass hu-
man capabilities. Such global design capabilities not only significantly improve design efficiency but also
achieve better trade-offs among performance, power, and area (PPA) objectives, driving computer system
architecture design toward higher levels of intelligence and automation.

To realize LPCM, multiple modules need to be collaboratively designed to cover the full technology
stack from high-level software interfaces to low-level hardware implementation. This includes several
critical components such as compiler design, operating system support, hardware-software partition-
ing, microarchitecture design, RTL (Register Transfer Level) design, and simulator development. The
compiler translates high-level language programs into machine instructions, enabling software to inter-



Sci China Inf Sci 5

act efficiently with hardware. The operating system manages hardware resources and provides abstract
interfaces, ensuring efficient resource allocation and system stability. Hardware-software partitioning de-
termines whether specific functionalities are implemented in hardware or software, balancing performance,
flexibility, and design complexity. Microarchitecture design focuses on optimizing processor performance
and energy efficiency by defining the internal structure and data flow of the processor. RTL design
implements the hardware logic, specifying the behavior of digital circuits at the register transfer level.
Finally, simulators are used to verify and evaluate system performance, ensuring that the design meets
functional and performance requirements before physical implementation. By integrating these modules,
LPCM can achieve a comprehensive and automated design flow, enabling end-to-end optimization and
validation of computer system architectures. This holistic approach not only enhances design efficiency
but also ensures that the final system meets the desired performance, power, and area (PPA) objectives.

Achieving LPCM is a highly challenging task, whose complexity and interdisciplinary nature determine
that this goal cannot be accomplished overnight but requires gradual advancement in stages. Based on
the varying degrees of automation in the design process, the implementation can be divided into the
following three levels.

Level 1: Human-Centric Hierarchical Design and Optimization. In the human-centric hier-
archical design and optimization phase, LPCM serves as auxiliary tools to assist humans in designing
computer system architectures. Humans, as the primary drivers of the design process, are responsible
for setting goals of hierarchical design, such as instruction set architecture, memory hierarchy, compiler
optimization strategies, and more. They accomplish the main design tasks with the help of existing
system architecture design tools like LLVM, GEMS5, Chisel, and Verilog simulators. The primary role of
LPCM in this phase is to provide suggestions to humans, such as generating code snippets, proposing
optimization algorithms, or offering hardware description language (HDL) templates. However, for the
design of complex components, such as processor pipelines and cache coherence protocols, the decision
and optimization still heavily rely on human expertise.

During this level, human involvement accounts for a significant portion of the work, and the use of
design tools is frequent. The contributions of LPCM are limited, primarily focusing on repetitive tasks
like code generation and parameter tuning, or knowledge retrieval tasks such as searching for relevant
research papers, tool documentation, or design specifications. Human experts are responsible for the
hierarchical verification and optimization of the design results, ensuring that the design goals at each
level, such as compiler layer, hardware architecture layer, and hardware module layer, are consistent and
efficient.

In this level, LPCM possess limited domain-specific knowledge. It may directly employ general-purpose
large language models like ChatGPT or DeepSeek without undergoing deep fine-tuning for the computer
system architecture domain or integration with domain-specific tools like LLVM, Gemb, or Chisel. As a
result, the outputs of these models require rigorous review and optimization by human experts, especially
in cross-layer designs such as hardware-software co-design.

Level 2: Agent-Orchestrated Cross-Layer Design and Optimization. In the agent-orchestrated
cross-layer design and optimization phase, LPCM act as intelligent agents capable of independently com-
pleting certain subtasks, such as automatically generating compiler optimization passes, designing simple
processor microarchitectures, and creating operating system scheduling algorithms. Humans only need to
define the design objectives for these subtasks, such as performance metrics and power constraints, while
LPCM autonomously handle the design, evaluation, and error correction of these subtasks. For example,
through domain-specific fine-tuning, LPCM can generate hardware description language (HDL) code,
design pipeline configurations, and cache hierarchies for processor microarchitectures. For cross-layer
optimization tasks like hardware-software co-design, LPCM can coordinate design goals across different
layers, such as the compiler layer, hardware architecture layer, and hardware module layer, and auto-
matically integrate and invoke toolchains like LLVM and Gemb to accomplish specific tasks. In terms of
evaluation, LPCM can utilize simulation tools such as Gem5 and Verilog simulators to assess hardware
design performance, generate performance reports on throughput, latency, and power consumption, and
conduct corresponding analyses. LPCM can also automatically detect issues in the design, such as perfor-
mance bottlenecks, functional errors, or power consumption violations, and generate corrective solutions,
such as adjusting pipeline configurations, modifying cache coherence protocols, or optimizing scheduling
algorithms, followed by regenerating the design. However, for highly complex tasks, such as designing
multi-core cache coherence protocols, human expert intervention and optimization are still required.

During this level, human involvement significantly decreases, and the reliance on design tools is reduced,



Sci China Inf Sci 6

while the responsibilities of LPCM increase substantially. LPCM play a central role in exploring the design
space and can rapidly generate and evaluate multiple design solutions, such as different processor pipeline
configurations and memory hierarchies. Additionally, LPCM can automate verification tasks, including
formal verification and simulation testing, to ensure design consistency and correctness.

In this level, LPCM possess extensive domain-specific knowledge, having been fine-tuned using domain
data such as research papers, open-source projects, and toolchain documentation from the computer
architecture field. They are capable of understanding and generating code and design documents that
comply with domain-specific standards. Furthermore, LPCM can propose optimization suggestions based
on cross-layer design requirements, such as matching compiler optimizations with hardware characteristics
or coordinating operating system scheduling with processor microarchitecture, thereby achieving overall
performance improvements.

Level 3: Model-Governed Autonomous Design and Optimization. In the model-governed
autonomous design and optimization phase, LPCM achieve full automation of the entire design pro-
cess, independently completing all subtasks such as compiler optimization, operating system scheduling,
instruction set architecture design, and processor microarchitecture design. LPCM also establish a com-
plete closed loop encompassing system design, evaluation, and error correction. LPCM can autonomously
invoke toolchains like LLVM, Gemb, and Verilog simulators to perform design, simulation, verification,
and optimization, entirely replacing manual design and the use of traditional design tools. Through
cross-layer optimization in hardware-software co-design, LPCM ensure consistency in design goals across
all levels and achieve optimal overall performance.

During this level, humans only need to propose high-level objectives, such as “design a power-efficient
RISC-V processor”, and LPCM can autonomously complete the entire design process. The involvement
of LPCM approaches 100%, with almost no need for human intervention. LPCM can automatically de-
compose tasks, generate design solutions, and iteratively optimize them using simulation and verification
tools like Gemb and Synopsys VCS. Based on design goals and constraints such as performance, power
consumption, and area, LPCM can explore the design space and identify optimal solutions.

In this level, LPCM possess extensive domain-specific knowledge, reaching or even surpassing the
level of domain experts in terms of design efficiency and quality. It can integrate the latest research
advancements, such as novel memory technologies and quantum computing architectures, to propose
innovative design solutions, driving the forefront of computer system architecture development.

2 Compiler meets LLM

2.1 Motivation

Compilers play a crucial role as crucial intermediaries between human-readable source code and machine-
executable code, ensuring reliable application performance across diverse hardware architectures. With
the emergence of domain-specific applications, specialized architectures have been designed to enhance
performance and reduce power consumption. However, significant challenges persist in the collaborative
design of software and hardware, as iterative updates typically demand months or even years to complete.
This bottleneck has prompted researchers to investigate automated methods for compiler construction.

The traditional compiler toolchain process, ranging from lexical analysis and parsing to optimization
and code generation, is well-established but demands substantial expert knowledge, especially when
adapting to new architectures. This dependency results in a bottleneck, primarily attributed to the
scarcity of experienced compiler engineers. The LLM compiler is designed to tackle this limitation by
automating the adaptation of compilers for emerging domain-specific architectures, thereby facilitating
rapid development iteration cycles between hardware modules and software modules within the LPCM
framework.

Large language models have demonstrated exceptional capabilities in code generation and pattern
recognition, offering a promising approach to addressing the challenges in compiler development. Within
the LPCM framework, the compiler module serves as a critical bridge connecting software applications,
hardware specifications, and hardware architectures. This connection has the potential to significantly ac-
celerate development cycles by enabling automated transformation and optimization. While Al-powered
tools like GitHub Copilot, TabNine, and Cursor have enhanced general code development productivity,
they often exhibit limitations in comprehending complex system architectures and compiler design princi-



Sci China Inf Sci 7

Software . -sili ilati Output
N Presentation Pre-silicon Compilation p
Hardware Generation {\ Verification Software Code
Algorithm ‘ CoT ?ﬂ Test Based ‘
& Descriptions 0=0, .
RAG u Human-in- Multi-level
- h _I N
Preprocessing the-loop Representation
LA E Processor Post-silicon Compilation Output
q Specifications .
Program Analysis Analysis Compiler
Extension i ot
Code Translation ‘ ‘ # Encodler ‘ Specification
: Source Code Hardware
Unit Test Decoder -
nittes (Application & = Compiler
Optimization Library) Instruction ‘;)) 'I::gnpltate Components
o, aptor

Figure 1 LLM Compiler in Large processor chip model: an overview

ples. However, their effectiveness remains constrained by limited exposure to compiler source code during
training. Thus this field continues to depend heavily on scarce expert knowledge. The LLM compiler
approach aims to address this limitation by developing specialized models with deeper understanding of
compiler construction. This not only alleviates the engineering bottleneck but also enables more efficient
code generation tailored for iteratively evolving hardware architectures.

There is an increasing demand for specialized large language models in compiler-related tasks within
system architecture research. These expert-level LLMs are crucial for adapting to changes in emerging
domain-specific architectures, facilitating collaboration between hardware and software development, and
enhancing the co-design process within the LPCM. By training with datasets that incorporate compiler
knowledge, such as source codes and assembly instructions, the automation and intelligence of system
software within a LPCM can be significantly enhanced, thereby improving development workflows sig-
nificantly. When a new ISA is produced—either a novel design or an extension—there is typically no
immediately available compiler toolchain to support it. To this end, the compiler module must undergo
iterative updates to ensure efficient code generation and execution tailored to the new architecture. The
connection pathway of the compiler module with its adjacent components within the LPCM framework
is described as follows: 1) Inputs. The compiler module receives the software source code from upstream
modules containing new algorithm implementations and partition information, and hardware basic spec-
ifications for further implementation, which include parameters that the compiler should consider during
the generation and optimization process. 2) Outputs. The compiler module generates the transformed
source code and appropriate intermediate representations for downstream modules, such as DSE modules,
and constructs compiler components that can be integrated into conventional compiler systems during
iterative design refinement.

2.2 The overview of LLM Compiler

To leverage the capabilities of LLMs and realize fully automated compiler design without human inter-
vention, we propose the LLM Compiler, an advanced compilation toolchain powered by LLMs, tailored
specifically for compilation and programming tasks within LPCM. However, achieving the goal of un-
manned intervention is a long-term process that cannot be accomplished overnight. To support this
objective, we define three levels based on technological development trends and the varying capabilities
of LLMs as follows:

e Level 1: Assisted Compiler Development. In this process, LLMs utilize compilation knowledge
obtained during training or fine-tuning, take engineers’ requirements and the code context to be edited
as input, and produce edited code as output, including source code analysis and transformation, as
well as suggestions for compiler component generation. This capability effectively accelerates engineers’
development work, as demonstrated by systems like Cursor.

e Level 2: Semi-Autonomous Compiler Components construction. LLMs can fulfill one
or more critical roles in three primary compiler tasks: decision-making, integration with the existing
compilation system software, and execution of specialized compiler functions. By employing an agent-
based framework, the entire workflow, spanning from application intake to compilation and hardware



Sci China Inf Sci 8

adaptation, can be partially automated. However, human intervention remains essential for refining and
adjusting inputs and outputs across modules, as the compilation process is inherently error-prone.

e Level 3: End-to-End Compiler Generation and Execution. LLMs can autonomously manage
the entire compilation and deployment process. Human users are only required to specify task objectives
or provide inputs, after which the system delivers the final results.

Related Work. Most contemporary research and development efforts remain at Level 1, where LLMs
provide supportive functions while humans maintain primary control over the compiler development
process. Representative code completion and automatic programming tools, such as GitHub Copilot
and TabNine, belong to this category. These tools generate code snippets and provide completion sug-
gestions but exhibit limited understanding of the knowledge in compiler domains. The source code
translation approaches presented in [28] and [29], as well as code LLM models such as CodeBERT [30]
and CodeT5 [31], similarly function at Level 1. These methods provide support to developers but lack
autonomous decision-making capabilities. Emerging work is progressively advancing to Level 2, where
LLMs assume semi-autonomous roles in constructing compiler components. ComBack [32] showcases
the LLM-driven automation of instruction selection and register allocation, whereas specialized models
introduced in [33] are capable of translating high-level code into extended ISA instructions with mini-
mal supervision. VeGen [34], which focus on SIMD vectorization, also belong to this category. These
approaches partially automate compiler components but still require human intervention for seamless
integration. Systems at Level 3, which are capable of end-to-end compiler generation and execution
with minimal human intervention, remain largely theoretical. Recent neural compilation methods [35,36]
provide promising foundations for potentially realizing such systems. The progression from Level 2 to
Level 3 signifies the current research frontier, demanding substantial advancements in LLMs’ capabilities
to reason about intricate compiler architectures, manage cross-component interactions effectively, and
produce both reliable and optimized code generation pathways.

Our LLM Compiler, currently at Level 2 and targeting advancement to Level 3, encompasses two
distinct approaches specifically designed to meet different development requirements: LLM as Compiler
and LLM generates Compiler.

2.2.1 LLM as Compiler

LLMs can directly serve as translation components for converting source code to an extended ISA design,
functioning as an LLM Compiler. In this design paradigm, the process differs based on two distinct
scenarios. In the first scenario, when working with an existing Domain-Specific Architecture (DSA) that
incorporates new hardware components, the LLM Compiler identifies code segments suitable for accel-
eration on the new hardware while maintaining compatibility with the established DSA framework. In
the second scenario, when confronting an entirely new DSA or significant instruction set extensions, the
LLM Compiler must perform comprehensive analysis and translation of the source code to fully lever-
age the novel architectural capabilities, effectively bridging the gap between conventional programming
paradigms and the innovative instruction set.

The LLM first functions as an analyzer, assessing the characteristics of the source code and partitioning
it into multiple sub-regions (using either basic blocks, control blocks, or functions as granular units). For
each sub-region, the LLM evaluates whether it can be mapped to extended instructions or operators. If
mapping is feasible, we assume that translating to extended instructions will yield benefits. The cost
model provided by the ISA design is then used to select the mapping approach that offers the greatest
advantage.

Subsequently, the LLM acts as a translator, translating the source code according to the selected
mapping scheme. It is important to recognize that this translation process is prone to errors; therefore,
it requires constraint information and examples from the ISA design as few-shot guidance. Additionally,
the results must be verified for functional equivalence against the original program—specifically, by
comparing the output of the compiled code to that produced when executed on a pure CPU—to ensure
the correctness of the generated code.

Looking toward the future, LLM Compilers within LPCM will likely evolve to incorporate reinforce-
ment learning from verification results, allowing them to continuously improve translation accuracy and
optimization strategies. They may also develop capabilities to suggest architectural modifications based
on observed software patterns, effectively participating in the co-design process rather than merely imple-
menting it. As these models mature, they could potentially generate entire compiler toolchains for new



Sci China Inf Sci 9

architectures automatically, eliminating one of the major bottlenecks in deploying novel computational
paradigms.

2.2.2 LLM generates Compiler

LLMs can also function as code generators, contributing to the development of compiler components.
Traditionally, as hardware architectures evolve through successive iterations, adapting compiler backends
to new ISAs requires manual modifications, leading to substantial development costs. However, we
observe that despite varing ISA features, compiler backends exhibit consistent structural patterns and
invariant operational norms across their analysis and transformation passes.This consistency provides the
foundation for LLM-automated compiler generation.

Using LLVM as an example, its compiler backend processes maintain four canonical processing phases
regardless of target architecture: instruction selection, register allocation, instruction scheduling, and
code emission. Each phase follows deterministic implementation patterns while utilizing Architecture-
specific information and stable transformation algorithms. The hardware characteristics required by these
phases are uniformly described in target description .td files using TableGen, a DSL.

However, LLM faces challenges when generating system-level compiler code, especially when processing
natural language requirements that often fail to highlight extended instruction set specifications. To
address this challenge, we propose a systematic approach of analyzing existing LLVM-supported ISAs to
construct structured few-shot examples linking natural language requirements, TableGen modifications,
and Pass adaptation code generation. This framework aims to effectively guide LLMs in extending the
LLVM compiler for new ISAs.

Furthermore, the characteristics of compiler backends allow us to extract specific implementation
patterns from the workflow in LLVM. We aim to build a compiler backend-oriented fine-tuning dataset
to enhance open-source LLM’s accuracy in generating compiler backend code.

In future work, these capabilities will be integrated into LPCM, supporting automated adaptation
of the compiler module, thereby enabling prototype architecture to be rapidly assessed. This approach
complements the LLM as Compiler method by addressing distinct phases of the compiler development
lifecycle within the LPCM, facilitating rapid hardware-software co-evolution.

3 Binary Translation meets LLM

3.1 Motivation

The rapid evolution of processor architectures has brought unprecedented challenges and opportunities
to software ecosystem construction for emerging processors. The binary translation module is designed
to enable seamless migration and efficient execution of applications across heterogeneous Instruction Set
Architectures (ISAs), thereby breaking down ecosystem barriers and accelerating the adoption of new
processor platforms.

Traditional binary translation approaches face two main challenges: (1) High development cost
and long cycles, as translators must be manually crafted and tuned for every new ISA combination
and scenario, and (2) Limited adaptability and scalability, with heavy reliance on expert knowledge
and hand-crafted rules, making it hard to keep up with the rapid proliferation of ISAs and emerging
hardware-software co-design requirements. These challenges underscore the urgent need for automated,
intelligent binary translation that can efficiently adapt to new architectures and workloads.

What sets our module apart is its integration of Large Language Models (LLMs) to achieve automation
throughout the entire binary translation workflow. Leveraging LLMs, the module can not only automate
the generation of binary translators but also deliver tailored outputs—such as customized instruction sets
and hardware optimization suggestions—based on dynamic program behaviors and hardware features.
This marks a paradigm shift from traditional, labor-intensive approaches to a data-driven, intelligent
automation framework.

Within the LPCM framework, our module plays a pivotal role: it aims to dramatically reduce devel-
opment time, automate the generation and optimization of binary translators, and provide the critical
outputs as shown in Figure 2. which include key information—including binary translation hardware ex-
tension descriptions, hardware-software co-optimization suggestions, and tailored instruction sets. This
information can be delivered to the modules of Architecture simulator and Design Space Exploration



Sci China Inf Sci 10

for simulation and implementation, supporting upstream hardware design optimization and downstream
software migration and deployment, and facilitating efficient interaction among LPCM modules.

3.2 Overview of binary translation tool

3.2.1 Development Stages and Related Work

Across the three levels of LPCM development, we systematically leverage LLMs to introduce intelligence
into the binary translation module, focusing on the unique needs and characteristics of binary lifting,
instruction mapping and equivalence transformation, as well as dynamic behavior analysis and hotspot
detection.

e Level 1: LLM-Assisted Binary Analysis and Lifting. In this level, the binary translation
toolchain is mainly developed and refined by human experts, with LLMs serving as auxiliary analysis
engines. The LLM assists with tasks such as binary lifting—converting binaries to intermediate rep-
resentations (e.g., LLVM IR)—and the extraction of reduced instruction sets for application-specific
translation. The output includes a manually crafted binary translator and a reduced instruction set,
which is provided to the Design Space Exploration (DSE) module.

e Level 2: Agent-Orchestrated Binary Translation and Optimization. At this level, LLMs
evolve from auxiliary tools to orchestrating agents, coordinating multiple submodules such as program
analysis and hardware optimization. The LLM-driven agent invokes relevant analysis tools, identifies hot
code regions, performs instruction slicing, and generates hardware optimization descriptions.

e Level 3: End-to-End Autonomous Binary Translator Generation and Optimization. In
this advanced level, the LLM autonomously governs the entire pipeline, model-governed autonomous
design and Optimization from binary analysis to translator generation, based on architectural models
of both source (guest) and target (host) processors. This enables the rapid, automatic production of
highly compatible translators and tailored hardware/software optimization recommendations. Although
few current systems have reached this level, it represents the ultimate goal of fully automated, intelligent
binary translation.

Related Work. Situating recent binary translation research within our three-level automation frame-
work helps clarify the state of the field and the trajectory of progress. The majority of contemporary
efforts remain at level 1, where the core binary lifting and translation toolchains are still primarily de-
veloped by human experts, with LLMs or Al serving as auxiliary engines. Tools and frameworks such
as BOLT [37] and Lightning [38] exemplify this phase: they leverage sampled runtime information and
predefined rules for code layout optimization or binary rewriting, but the pipeline is fundamentally rule-
based, requiring extensive manual engineering to adapt to new architectures or applications. Recent
years have witnessed a growing body of research advancing towards level 2, where LLMs and machine
learning models orchestrate and automate increasingly significant portions of the binary translation pro-
cess. For example, Wong et al. [39] employ GPT-4 as the core of an end-to-end decompilation framework,
enabling self-refinement of generated code. Projects like Forklift [40] and LLM4Decompile [41] illustrate
alternative strategies: Forklift trains an end-to-end code-lifting model with enhanced scalability across
architectures, while LLM4Decompile augments end-to-end models with refinement modules built atop
traditional tools, demonstrating that targeted refinement can outperform naive end-to-end approaches.
True level 3 systems—where models autonomously govern the entire binary translation and optimization
pipeline, from analysis to code generation and hardware adaptation—are still largely aspirational.

3.2.2  Proposed framework design

Our module aims to drive the transition towards LLM-governed binary translation systems within LPCM.
We plan to:

e Develop a unified LLM-driven framework that adapts to diverse ISAs and application domains,
supporting both static and dynamic translation needs.

e Deeply integrate program behavior analysis and hardware co-design, supplying actionable insights
for both software migration and hardware optimization.

e Continuously provide high-quality, standardized outputs—customized translators, optimization sug-
gestions, and tailored ISAs—to other LPCM modules, expediting system-wide co-evolution and ecosystem
expansion.



Sci China Inf Sci 11

Pre-silicon
Input Output Interface
Tailored Hardware
Binarv-related Instruction OptimizaFion Processors Parameter
Y Set Description (Interact with Design
Target Processor X | .
- Binary ; ; o Space Exploration
pECI Binary Translation Optimization module)
Translators Hardware Description
Tool
Output (Used in Post-silicon) Lk alelr St.r eam
Guest Binary (Interact with
Binary Translator Architecture simulator
(LLM-Generated) module)
Input Output Run on Target Processor
Binary , . o
X Translators Binary Translation Optimization Target Processor
Guest Binary Hardware Description

Post-silicon

Figure 2 The hierarchical workflow of the LLM-driven binary translation module within LPCM.

Our work aims to build an advanced binary translation tool that intervenes as early as the pre-silicon
design phase to introduce a paradigm shift, as illustrated in Figure 2. The primary objective is to auto-
mate the generation of binary translators, thereby significantly reducing or even eliminating the need for
manual development. Tailored instruction sets, Hardware optimization descriptions and Binary transla-
tion optimization hardware description interact with other modules, while the tool continuously acquiring
the latest processing data and performance evaluation results to support the iterative development of the
advanced binary translation tool itself. In line with the three levels of LPCM development, the output
process of the binary translation tool is also divided into three iterative phases within the workflow.

In the post-silicon verification phase, where the target processor design has been finalized, the binary
translation tool shifts its focus to the construction of the runtime environment. It facilitates the stable
and efficient execution of applications and dependent libraries originally developed for other ISAs or en-
vironments on the finalized hardware. Specifically, the binary translation tool supports rapid application
porting and deployment, ensures backward compatibility, continuously optimizes hardware performance,
and contributes to building a comprehensive software ecosystem for the new hardware. This comprehen-
sive approach ensures that both hardware and software are fully integrated to maximize performance and
usability across diverse computing environments.

In summary, the binary translation module serves as a crucial enabler for cross-ISA application mi-
gration, hardware/software co-optimization, and the intelligent evolution of system architectures within
LPCM, ultimately bridging the gap between emerging hardware and rich software ecosystems.

4 Simulator meets LLM
4.1 Motivation

Computer architecture simulators are software tools that model the structure and performance of com-
puter systems or components such as CPUs and memory. As semiconductor technology advances, chip
architectures become increasingly complex, making these simulators essential for research and develop-
ment. They facilitate experimental analysis, rapid design iteration, and cost minimization before finalizing
designs. However, as research in domain-specific acceleration evolves rapidly, the traditional approach
to developing these simulators, which relies on human expertise, struggles to keep up with the pace of
innovation. This development paradigm faces several significant challenges:

(1) High Learning Curve. Mature simulators like GEM5 [42,43], booksim [44], and QEMU [45] have



Sci China Inf Sci 12

developed extensive and complex codebases over the past decade, posing challenges for new developers.
Understanding their architectural design and implementation can require 24 weeks, hindering efficient
modifications and research in hardware architecture.

(2) Simulator Composition Challenges. Computer system architecture comprises several mod-
ules, including the CPU, GPU, NPU, DRAM, and SSD. However, existing simulators typically focus
on individual components and employ distinct simulation methods and communication interfaces. This
complexity can hinder development efficiency, underscoring the need for an automated integration scheme
to streamline the process.

(3) Prolonged Development Cycles: The construction of traditional simulators typically involves
multi-level abstract modeling, which spans from ISA functional validation to micro-architecture timing
simulation, and is generally carried out manually. However, as the complexity of computer architecture
system design continues to grow, the conventional manual implementation of simulators faces challenges
such as tedious programming, intricate verification issues, and a time-consuming design space exploration
process. These factors hinder the swift iteration of computer architecture system design.

Fortunately, the capabilities of large language models, particularly their advanced functionalities in
code generation, code analysis, and debugging, offer an opportunity to address the aforementioned chal-
lenges and reform the development paradigm of computer architecture simulators. Thereby, it is time to
leverage LLMs to design an efficient framework for the automated generation of computer architecture
simulators, enabling automated transformation of user requirements or research papers into computer
system architecture simulator. The input and output of an automated design framework for computer
system architecture simulator should have the following functions:

Input: The framework primarily accepts simulation configurations and simulated workloads as input.
These configurations can be represented in various modalities, including but not limited to natural lan-
guage, documents, tables, and structured formats such as JSON and XML. The simulated workloads
are generated by the upstream compiler module and typically appear in binary form or as user-defined
intermediate representations.

Output: The output of the framework mainly includes two parts: complete simulator project codebase
and user-required performance metrics & analysis results. The former is the engineering code correspond-
ing to the generated architecture simulator, including source code, documentation, etc., provided to users
for code verification or secondary modification, while the latter is the simulation results required by users
to verify the effectiveness of the design and achieve design optimization iteration.

4.2 LLM-driven computer architecture simulator automation design framework

Despite the remarkable progress in LLM technology in recent years, developing an LLM-driven automated
design platform for computer system architecture simulators with comprehensive end-to-end capabilities
remains a significant challenge that cannot be overcome in a short time. In this context, this paper
presents an automation grading standard specifically for the design of computer system architecture
simulators powered by LLMs. As shown in Figure 3, the automated design process is organized into
three levels, categorized according to the dimensions of functional realization and scenario requirements.

e Level 1: Intelligent Configuration of Simulators Based on General-Purpose LLMs. The
objective of Level 1 is to simplify and alleviate the cumbersome process of manually configuring simulators
by harnessing the capabilities of advanced LLMs. By developing an efficient and intelligent mechanism
that automates the conversion of natural language commands into precise simulator configurations, re-
searchers can shift their focus away from the tedious aspects of simulator setup, allowing them to dedicate
more energy and creativity to the computer system architecture design.

e Level 2: Agent-Driven Simulator Composition. The L1 level is dedicated to the automatic
configuration of parameters for a single simulator, whereas the L2 level builds on this foundation by
focusing on the automated interconnection of multiple simulators. The primary goal of Level 2 is to
utilize large language models (LLMs) to bridge gaps among existing simulators in terms of simulation
mechanisms, communication protocols, and interface standards. Attaining Level 2 has the potential to
significantly reduce the time and effort researchers invest in simulator integration, while also improving
the overall efficiency and flexibility of simulator design.

e Level 3: Autonomous Simulator Design, Generation, and Optimization. By utilizing the
vast and varied data resources collected during Level 2, such as simulator source codes, workloads, and
dynamic performance benchmark datasets, we can create domain-specific LLMs tailored for simulators.



Sci China Inf Sci

13

User defined information def config():
Architect FetchWidth=3
rchitecture RobEntry=32
Workload . &
Desian ICacheWay=8
Level-1 g ’ DCacheWay=8
Semiconductor Process Gﬁj\jral
S New script files
................................................. > GEMS5
Simulator warehouse ey .
NPUSIm
5 & System Bus
Level-2 gg'm Nz GEMU -
—>
1] General
BE0 Eoravsys | ene > DRAMSYS
S Simulator
Tralnlng Combination
data
: ; ; Predicted » Fast .
Usel‘ deflned |nf0rmat|0n & —_ Performance > Approx|mate
Target Target L> ; accurate
Level-3 workload architecture Domain LLM:s as a simulator
Target Semi. Targgt Specific Generated > Slow
process metnc LLMs Simulator project | » Cycle-accurate

LLMs generate a simulator

Figure 3 The three levels of design automation for LLM-driven computer system architecture simulators.

This progress has the potential to transform the design approach of computer system simulators, moving
from a human-centered methodology to complete process automation.

We have developed and implemented an intelligent computer system architecture simulator configura-
tion solution leveraging the capabilities of a general-purpose LLMs, successfully accomplishing the core
objectives of the L1 stage. In our experiments within the CPU domain, we selected the DeepSeek-V3 [46]
as the foundational model to configure GEM5 [42] simulator. By processing user-defined parameter
configuration requirements, we effectively generated customized SFE.py simulation script files that meets
user requirements, utilizing the unmodified SE.py file as the starting template. Meanwhile, the generated
scripts successfully passed the workload tests for 3D Gaussian Splatting [47] (3DGS), confirming their
validity and accuracy. For the NPU domain experiments, we utilized the DeepSeek-V3 model, without
any fine-tuning, and employed partial systolic array modules from the Gem5-Aladdin [48] simulator as
configuration templates. With minimal human feedback for adjustments, we successfully created an NPU
simulator specifically optimized for the 3DGS workload, based on the configuration parameters provided
by the user. After integrating the generated code segments into the Gem5-Aladdin project, the simulator
successfully passed the GEMV and GEMM tests within the workload, further establishing its performance
and reliability. In our end-to-end 3DGS workload simulation experiments, we conducted comprehensive
simulations of the 3DGS algorithm using the generated CPU and NPU modules. For the CPU module,
we automated the complete parameter search process by integrating it with a design space exploration
module, evaluating eight different parameter configurations before identifying the optimal set. Similarly,
for the NPU module, we conducted an in-depth exploration of six key parameters, including systolic
array dimensions and SRAM size, through the design space exploration module, ultimately determin-
ing the best configuration. Subsequently, the generated modules are integrated into the Gem5-Aladdin
framework, facilitating inter-module communication through shared memory to support the accelerated
execution of the 3DGS algorithm. The experiments contrasted CPU-only mode with CPU-NPU mode for
simulating 3DGS. The results revealed that the CPU-NPU simulator achieved over a 20% improvement
in end-to-end performance compared to CPU-only execution for the 3DGS algorithm. This outcome not
only confirms the effectiveness of our solution in automating simulator configuration but also highlights
its considerable potential for enhancing algorithm execution performance.



Sci China Inf Sci 14

In future work, we will further explore using LLMs to achieve Level 2 and Level 3 automated computer
architecture simulator generation. Specifically, to achieve efficient integration of L2 level simulators, we
will first develop a standardized interface protocol for simulator interconnection. This will enable plug-
and-play connectivity among simulators using different simulation mechanisms by defining a unified data
exchange format and communication specifications, thereby avoiding the technical bottleneck associated
with extensive code refactoring in traditional integration approaches. Secondly, we will establish a com-
prehensive knowledge base of computer system architecture. This knowledge base will include two main
types of data: the first encompasses simulator engineering data, systematically featuring the code bases
of prominent architectures such as GEM5 [42] and Booksim [44]; the second comprises knowledge on
simulator interconnection and design methodologies. By leveraging the capabilities of LLMs alongside
this knowledge base, the system will be equipped to semantically parse user requirements, identify the
optimal simulators from the knowledge base, and seamlessly facilitate efficient interconnection among
different simulators through the use of standardized interface protocols.

To achieve the goal of automating the design and generation of architecture simulators without human
intervention at the level 3, we leverage the impressive capabilities of large models in code generation
and performance prediction. Our approach consists of two distinct technical routes, focusing on the core
dimensions of simulator accuracy and speed.

(1) LLM as an simulator. By gathering workload code, hardware architecture details, and perfor-
mance data from code executed on various architectures, we engage in domain-specific LLMs for computer
architecture system simulator. This model is capable of accurately analyzing different workloads and
hardware design schemes, simulating the execution process of workloads on various hardware architec-
tures, and generating precise user required performance evaluation results. Essentially, the LLMs evolve
into a simulator that incorporates performance prediction capabilities, making it suitable for architecture
simulation and performance evaluation.

(2) LLM generates an simulator. The distinctive strengths of LLMs in code generation offer us a
remarkable opportunity to translate researchers’ design requirements into computer architecture system
engineering code. In this way, researchers need only to articulate their design specifications, targeted per-
formance metrics, and other critical information in natural language. The LLMs can then automatically
interpret these requirements, transforming them into precise and standardized computer architecture
system engineering code through their advanced semantic understanding and coding capabilities.

5 HW/SW partition meets LLM
5.1 Motivation

As heterogeneous computing systems grow increasingly complex, hardware-software partitioning has be-
come an indispensable step in the development process. Hardware-software partitioning is essential for
rapid validation and iteration. At the early stages of system development, partitioning helps design-
ers quickly establish system models, estimate performance, and analyze bottlenecks, providing clear
guidance for subsequent hardware design and software development. By effectively distributing tasks
between software and hardware modules, it not only optimizes performance and power consumption but
also maximizes resource utilization. However, traditional partitioning methods face the following major
challenges:

1. Low development efficiency and lengthy optimization cycles: Hardware-software partition-
ing involves complex task decomposition, hardware resource mapping, and interaction logic analysis.
Manual tuning is time-consuming and struggles to meet the demands of rapid iteration.

2. High dependency on expertise: Partitioning requires developers to possess deep expertise in
both hardware architecture and software design, increasing human resource costs and potentially
leading to suboptimal results when expertise is lacking.

3. Underutilized optimization opportunities: Without systematic learning from historical de-
sign patterns and large-scale data, manual partitioning often fails to uncover hidden performance
optimization potential.



Sci China Inf Sci 15

To address these challenges, a highly efficient framework leveraging LLMs for hardware-software par-
titioning automation can be designed to support end-to-end optimization, from requirement specification
to partitioning scheme generation. The ideal framework’s input and output paradigms are as follows:

Input: The framework should support diverse input formats, including natural language descriptions
of requirements and original task C/C++ code. To enable flexible customization, it should also allow
users to specify hardware resource parameters and partitioning constraints via structured formats such
as JSON.

Output: (1) Partitioning scheme: The framework generates detailed partitioning schemes tailored to
specific hardware architectures, specifying the allocation of each task to software or hardware. (2) Per-
formance prediction report: Outputs key performance metrics such as power consumption, performance,
and latency to help users quickly evaluate the scheme’s quality.

With this design, the framework can significantly reduce development cycles and optimization time
while uncovering hidden performance improvement opportunities through large-scale data learning. This
dual enhancement of development efficiency and design quality represents a transformative advancement
in the field of hardware-software co-design.

5.2 Proposed framework design

Based on the performance and involvement of LLM we proposed above, there are three progress chal-
lenging design approaches:

e Level 1: Human-guided HW /SW Partitioning. At this level, human engineers remain the pri-
mary decision-makers, while LLMs serve as intelligent assistants. Leveraging their capabilities in natural
language understanding and code analysis, LLMs can provide concise summaries, interpret complex mod-
ules, and analyze memory access patterns. These insights help engineers make informed design decisions
more efficiently, although the final partitioning choices are still made by humans.

e Level 2: Agent-Aissisted HW/SW Partitioning. At this level, LLMs take on a more proactive
role. Acting as intelligent agents, they can parse source code, generate task graphs, and suggest prelim-
inary partitioning strategies based on computational characteristics and platform constraints. Through
iterative feedback from users, these agents can refine their recommendations, enabling a co-creative work-
flow between humans and machines.

e Level 3: LLM-Driven Autonomous HW/SW Partitioning & Optimization. At this level,
LLMs are deeply integrated with compilers, performance models, and learning frameworks such as graph
neural networks. They are capable of executing the entire pipeline: analyzing code, constructing task
graphs, estimating computational and memory profiles, and conducting multi-objective design space
exploration to identify Pareto-optimal partitioning schemes. Moreover, LLMs can automatically generate
the necessary software-hardware interface code, facilitating seamless deployment.

Most current approaches to HW /SW partitioning still rely on traditional methods, with limited involve-
ment of LLMs. These conventional techniques typically depend on combinatorial optimization, heuristic
algorithms [49] [50], and performance estimation models to determine task allocation. Heuristic-based
methods—such as genetic algorithms [51] [52], simulated annealing [53], and hill climbing [54]—aim to
iteratively explore the solution space in search of optimal or near-optimal partitioning strategies under
constraints like performance, power consumption, and hardware resource utilization.

According to the input and output requirements outlined in Section 1.1, the LLM-based automated
hardware-software partitioning framework must fulfill two core functions: (1) Decomposition of Com-
plex Tasks: Automatically analyze and decompose the input program into multiple simpler subtasks
and generate the corresponding task dependency graph. (2) Rapid Task Performance Estimation and
Architecture Mapping: Quickly estimate the performance and resource consumption of individual nodes
and the entire task graph, enabling predictions of overall PPA (Power, Performance, and Area) under
different hardware-software partitioning schemes.

Based on the considerations above, we propose a method combining LLMs and graph learning models
to achieve these key functionalities. The overall workflow of the proposed automated hardware-software
partitioning framework is shown in Figure 4. The framework primarily consists of two components: (1)
LLM-Driven Task Graph Generation: This component automates the decomposition of input pro-
grams and generates the corresponding task dependency graph. The goal of decomposition is to transform
the input program from a complex and tightly coupled structure into a more transparent and interpretable
task graph data structure. In the task dependency graph, nodes represent different architectural tasks,



Sci China Inf Sci 16

Original
C Code e -
l as node Compiler
L \omation l & ' » graph | * | mapping - ./I\? » -ompile
imi config ®
LLM optimized task

graph partitioning result

g 1 4 1

performance
» merge

IS

Graph-Level
Performance Model R

Node-Level '

Performance Model

config 2
o /

R . . config n resource
initial fine-grained  refactor graph dual-level model
task graph
LLM-driven Task Graph Generation Performance Prediction and Mapping Config DSE

Figure 4 Automated hardware-software partitioning framework

while the dependencies between these tasks are captured by the edges of the graph. This approach refor-
mulates the hardware-software partitioning problem into a problem of managing dependencies between
nodes in the task dependency graph, enabling more efficient and actionable task scheduling and partition-
ing in subsequent steps. (2) Graph Learning Model-Based Task Graph Performance Prediction
and Partitioning: This component employs a dual-layer performance prediction framework powered by
graph learning models to rapidly assess the performance and resource consumption of individual nodes in
the task dependency graph, as well as the overall performance of the task graph under different mapping
configurations. This framework facilitates efficient exploration of the design space, enabling the iden-
tification of the optimal hardware-software partitioning scheme under given architectural and resource
constraints, thereby optimizing system performance and resource utilization.

5.2.1 LLM-Driven Task Graph Generation

As the first process of HW/SW partitioning, this step leverages LLM to generate an appropriate task
dependency graph from the original C/C-++ source code provided by the user. It begins by using an LLM
to produce an initial task graph with the finest granularity. In this initial graph, each function in the
input C/C++ code is treated as a separate task node, and edges are constructed based on function calls
and data dependencies. During this phase, the LLM analyzes the semantics and structural relationships
of the source code to generate nodes and infer the initial dependency edges. Next, LLM performs graph
optimization through node merging. It iteratively examines all directly connected node pairs and evaluates
the benefit of merging each pair, aiming to balance execution time and communication overhead. The
merging benefit is estimated based on the predicted performance characteristics of the nodes and the
volume of data exchanged between them. After evaluating all candidate pairs, LLM selects the one with
the highest gain for merging, updates the task graph accordingly. This process repeats iteratively until
no further beneficial merges can be performed. Through the above methodology, LLM generates a task
dependency graph that balances both execution time and communication overhead. The final output is
a structured JSON representation of the task graph, produced by the LLM.

5.2.2  Graph Learning Model-Based Task Graph Performance Prediction and Partitioning

This work is based on a dual-layer performance prediction model utilizing graph learning techniques.
The goal is to efficiently estimate the performance and resource consumption of each node in the task
dependency graph while predicting the overall performance of the entire task graph under different node-
to-architecture mapping configurations rapidly. This framework enables effective design space exploration,
allowing the identification of optimal software-hardware partitioning solutions within given architectural
and resource constraints, ultimately optimizing system performance and resource utilization. The work-
flow of performance prediction is shown in Figure 6.

The performance prediction model consists of two layers: a node-level performance prediction model
and a graph-level performance prediction model. In the node-level model, each node in the task de-
pendency graph is treated as an independent subtask. The model takes as input the C/C++ code



Sci China Inf Sci 17

Step1: Initial Fine-Grained Task Step2: Task Graph Optimization

Graph Generation

Based on Predicted Perf

% ‘ function 1 s
@ » function 2 »

2 = [iincionn O

» node-level perf
| model

4

Performance Prediction:

initial task graph i . y
generated by LLM : :

before merge: T{+T,
« after merge: Ty,

Optimized task merge gain: AT
JSON formatted task graph graph
Figure 5 Workflow of task graph generation
Task Graph Design constraints Task graph under optimal
| node-to- architecture
| mapping
SN v Resource constraint
Vg SRR v Performance
m Ay constraint
- dE v extra information...
R
execution
time Node Communication ,
Sub-Task Node IR Modelin Optimal Node-
:> @I g ':> to-Architecture
@ (0] Il Perf HEPITNE
X verall Performance
[__GNN I\gdelmg | resource Prediction
utilization I O Task
Sub-Task Perf |—> HW/SW partitioning ‘—> Scheduling
Predict DSE
Node-Level Graph-Level HW/SW partitioning

Performance Model

Figure

Performance Model

6 Dual-layer performance prediction.



Sci China Inf Sci 18

corresponding to each subtask and outputs predictions for the subtask’s performance and resource con-
sumption on different platforms (CPU and NPU). Specifically, the subtask code is first transformed into
an intermediate representation (IR) using high-level synthesis tools. This IR effectively abstracts the un-
derlying computational and memory access characteristics of the code, facilitating subsequent modeling.
Next, a graph neural network (GNN) is employed to model the performance and resource consumption of
each node. The GNN’s ability to capture local dependencies within the IR structure enhances the accu-
racy of the predictions by leveraging both the features of the task nodes and the structural relationships
in the IR.

The graph-level performance prediction model is designed to rapidly evaluate the overall performance of
the task graph under specific node-to-architecture mapping configurations. The model’s input includes the
entire task dependency graph, the architecture mapping configuration of the nodes, and performance data
for each subtask as predicted by the node-level model, such as execution time and resource consumption.
This model accounts for critical factors such as inter-node communication data, task scheduling, and
resource contention within the task graph to construct a comprehensive performance model.

Based on the output of the graph-level model, we can quickly evaluate the performance of the task
dependency graph across all feasible node-to-architecture mapping configurations. By combining this with
predefined resource constraints, the framework enables efficient design space exploration. This process
ultimately identifies a reasonable software-hardware partitioning scheme and task scheduling strategy
that ensures optimal overall system design.

6 Design Space Exploration meets LLM

6.1 Motivation

Design Space Exploration (DSE) plays a vital role as a strategic intermediary between algorithmic re-
quirements and hardware architecture, enabling the co-design of CPUs and co-processors under stringent
performance, power, and area (PPA) constraints. As computational demands continue to diversify, CPUs
must adapt through architectural refinement to maintain versatility, while co-processors leverage special-
ization to accelerate targeted workloads. Together, they push the boundaries of system-level performance.
However, this architectural flexibility results in exponentially growing design spaces and increasingly com-
plex parameter interactions.

Traditional manual DSE processes are typically slow, requiring months or even years of iterative opti-
mization, and have become a significant bottleneck in the hardware development lifecycle. This challenge
has led researchers to pursue intelligent DSE techniques tailored for both CPUs and co-processors, aiming
to rapidly identify optimal design points across vast configuration spaces. By automating this process,
such methods promise to significantly reduce development time and foster faster hardware-software co-
evolution.

However, achieving automated DSE comes with several key challenges. (1) Complex Integration within
the System Architecture Flow: The DSE module must ensure consistency, compatibility, and accurate
information exchange across various modules within the system architecture design workflow. Currently,
significant manual intervention is still required to maintain coherence and correct functionality through-
out the flow. (2) Offline Learning and Limited Adaptability: As new architectures, technologies, and
design methodologies continue to emerge, DSE modules must be frequently updated to remain effective.
However, enabling robust online learning while avoiding catastrophic forgetting remains a significant
challenge, limiting the system’s ability to adapt continuously and autonomously.

The integration of LLM into the DSE module can effectively addresses above challenges. LLM acts
as a seamless coordinator across different modules, automatically understanding and transmitting design
requirements and constraints, thereby reducing manual intervention and improving system consistency
and efficiency. Additionally, LLM’s robust knowledge generalization capability enables it to adapt to
new architectures and technologies without the need for frequent retraining. By supporting incremental
learning, LLM avoids catastrophic forgetting, ensuring continuous evolution. Through interactive opti-
mization with designers, LLM fosters a dynamic, adaptive, and intelligent design process, significantly
enhancing the automation and intelligence of the DSE module.

To address these challenges, we design a DSE module powered by LLMs. This module plays a founda-
tional role in navigating the vast design space of modern processors. Within the LPCM framework, the



Sci China Inf Sci 19

primary objective is to autonomously generate and refine hardware designs that meet diverse functional,
performance, and cost requirements—where both the CPU and co-processor are critical system compo-
nents. The DSE module, in this context, refers to the structured and intelligent process of exploring and
evaluating a wide range of CPU and co-processor configurations and architectures. Its goal is to identify
the most optimal hardware design that satisfies the multi-dimensional constraints and objectives defined
by LPCM. The role of DSE module in the LPCM can be outlined as follows.

e Automated Design Exploration. DSE module automates the process of exploring numerous
configurations of CPUs and co-processors, including cores, cache hierarchies, instruction sets, coproces-
sor architectures, extended instructions, cache coherence, and power/area/performance trade-offs. By
systematically adjusting these parameters, DSE module identifies the configuration that best meets per-
formance, power, area, and cost objectives.

e Rapid Iteration and Optimization. By leveraging performance predictions, different configura-
tions are rapidly evaluated in an iterative manner, where feedback from each evaluation cycle informs
subsequent design adjustments. This continuous refinement process significantly shortens development
cycles and reduces reliance on costly and time-consuming trial-and-error methods.

e Holistic System Optimization. DSE module does not operate in isolation. Instead, it is part of
a broader system-wide optimization process. The design of the CPU and co-processor is considered in
conjunction with other system components such as compilers, software/hardware partitions, and memory
subsystems. This interconnected approach ensures that the CPU and co-processor are optimized for
efficient operation within the larger system, creating a fully integrated and optimized architecture.

Input

User/LPCM
- Design requirements I
- Optimization objectives DSE

Output

Compiler
- Compiler-optimized e
binary

- Design point sampling
- Performance prediction Optimal design
- Bottleneck analysis
- Design space exploration —> | - Design parameters

- System-level dynamic

HW partition N ystem-
- Code inputs m optimization
Simulator
- PPA for selected design e

points

Figure 7 Workflow of CPU DSE module on LPCM.

The DSE module operates as illustrated in Figure 7. In the Input, it gathers essential inputs includ-
ing design requirements and optimization objectives from the top-level LPCM, workload characterization
code from the hardware-software partitioning module, compiler-optimized binaries for performance mod-
eling, and PPA results of selected design points from the simulation module for training and validation
purposes. During the exploration, the DSE module performs autonomous design point sampling with
adaptive density control, predicts PPA metrics for unexplored configurations without requiring external
simulation, and conducts bottleneck analysis to identify architectural inefficiencies—such as suboptimal
cache hierarchy or pipeline depth—informing microarchitectural refinements. These capabilities are in-
tegrated to guide efficient and intelligent exploration of the design space toward optimal architecture
configurations. Finally, in the Output, the DSE module delivers the optimized microarchitecture pa-
rameters—including core topology, execution units, and cache structures—to the RTL code generation
backend. Simultaneously, LPCM leverages insights from the DSE process to perform system-level dy-
namic optimization, adjusting OS settings, compiler strategies, and hardware acceleration schemes, thus
establishing a closed-loop co-optimization flow across the stack.

6.2 The Overview of DSE Module

To leverage the capabilities of LLMs and realize fully automated design space exploration without human
intervention, we propose the LLM DSE, an advanced exploration framework powered by LLMs, specifi-



Sci China Inf Sci 20

cally designed for prediction and optimization tasks within LPCM. However, achieving the goal of fully
autonomous hardware design is a long-term endeavor that requires progressive technological advances.
To support this objective, we define three levels based on the development trends and varying capabilities
of LLMs, as illustrated in Figure 8.

e Level 1: Human-Guided and LLM-Assisted DSE. At this level, LLMs function as intelligent
assistants to streamline repetitive tasks such as organizing input data, linking evaluation tools, and
generating basic configurations. While the core decision-making remains with human experts, LLMs
contribute by chaining sub-modules and facilitating design flow integration. The system remains highly
reliant on expert guidance for simulation execution, performance evaluation, and iterative refinement.
LLMs support input preprocessing and workflow scripting, but do not participate in active exploration
or optimization.

e Level 2: LLM-Driven Semi-Automated DSE. At this level, LLMs assume a more proactive
role by autonomously generating candidate configurations, analyzing performance feedback, and itera-
tively refining design proposals under human supervision. Human experts define high-level objectives
and constraints, while LLMs explore the design space by leveraging pre-trained knowledge and retrieval-
augmented generation (RAG) techniques. The interaction becomes bidirectional—LLMs propose adjust-
ments based on previous evaluation results, and experts respond by refining constraints or redefining
targets. This level enables partial autonomy while retaining expert control over critical decision points
within the design workflow. To effectively support diverse application scenarios, a general-purpose co-
processor DSE framework is required. This framework is typically built upon heuristic algorithms such
as genetic algorithms, with LLMs embedded into key components to enhance adaptability and decision-
making efficiency.

e Level 3: LLM-Governed Fully Autonomous DSE. At this level, LLMs govern the entire design
space exploration process with minimal to no human intervention. The system autonomously synthesizes
design inputs, generates and evaluates candidate architectures, and selects optimal configurations through
internal reasoning and feedback-driven learning. It performs holistic, cross-layer exploration and supports
multi-objective optimization across key metrics such as performance, power, and area. LLMs at this
stage act as central decision-makers, orchestrating the full loop of configuration generation, simulation
execution, result analysis, and iterative refinement, thereby achieving a high degree of autonomy in
hardware design.

Although recent efforts do not directly employ LLMs for DSE, they can serve as submodules within the
DSE module. These submodules include design samplers, performance models, and exploration methods.
The design samplers encompass techniques such as random sampling [55], orthogonal design [56,57], and
Pareto-aware sampling [58]. The performance models include linear regression [59], spline models [60],
neural networks [55, 56, 61, 62], Gaussian processes [63], XGBoost regressors [64], and GBRT regres-
sors [57,58,65]. Prediction accuracy can be further enhanced by leveraging transfer learning and meta
learning techniques from known workloads [66—70]. The exploration method includes heuristic search
and acquisition functions. The heuristic search generates candidate design points using predefined rules,
including random descent [71], genetic algorithm (GA) [72-76], and simulated annealing [77,78]. The
acquisition function relies on the statistical characteristics, including uncertainty [56], expected improve-
ment [79,80], and Pareto charateristics [57,58,63,65].

Moreover, the design space of co-processor architectures is highly complex, and as task loads continue
to diversify, it is crucial to thoroughly address the challenges of generality in co-processor design space
exploration. The exploration of this design space can be classified into three primary levels based on the
degree of generality in the methodologies employed. The first level focuses on optimization for single-task
execution on specific co-processor architectures, with studies at this level typically involving the design
of custom DNN accelerators [81,82]. The second level deals with the optimization for general tasks on
specific co-processor architectures, exemplified by automated design methods for systolic arrays [83,84].
The third and most advanced level concerns the automated selection and optimization of co-processor
architectures for general tasks. Although research in this area is still limited, studies like [85] have
introduced methods for designing general-purpose co-processors, offering valuable insights for future co-
processor design space exploration.



Sci China Inf Sci 21

Level 1 Level 2 Level 3

User
- Design space
- Evaluation indicators
- Manage configuration

v v

Task Queue

User
- Defines design space
- Optimization objectives

Domain knowledge

Domain knowledge Feature data

v
LLM fine-tuning LLM training

r )

Performance prediction |

Generate configuration

Linking submodule |
LLM inference

Bottleneck analysis |
| y | Performance prediction |

Organization and structuring |

Architect lorati | i
rchitecture exploration | Bottleneck analysis |

l \
- Faret e se T | Architecture exploration |
Simulator —> LLM agent x I I
7 | v v
Manual Output Expert Output optimal Output optimal
decision-making >  optimal decision ; ;
S . ; design design
and optimization design making
(a) (b) (c)

Figure 8 DSE module at (a) Level 1, (b) Level 2, and (c) Level 3.

6.2.1 Key Future Designs

To achieve higher levels of automation, adaptability, and intelligence in processor design space exploration,
future advancements must go beyond static decision-making pipelines. In this section, we present two
key enablers that underpin the transition from human-guided design to fully autonomous systems: (1) a
modularized reasoning and adaptive decision-making framework that empowers LLMs with structured,
interpretable, and feedback-driven capabilities, and (2) a unified knowledge graph with online learning
mechanisms to ensure continuous evolution and system-wide knowledge integration. Together, these
foundational designs lay the groundwork for scalable, explainable, and continuously improving DSE
processes across all levels of automation.

Modularized Reasoning and Adaptive Decision-Making Framework. To support fully au-
tonomous and reliable design space exploration at advanced automation levels, we propose a modular
reasoning and adaptive decision-making framework that empowers LLMs with structured, verifiable, and
context-aware inference capabilities. By decomposing the DSE process into modular sub-decisions—such
as architectural parameter tuning, pipeline depth configuration, and power gating strategy selection—the
LLM can apply localized heuristics and domain rules to each decision unit. This modular structure sim-
plifies learning, supports hierarchical optimization, and improves reasoning interpretability. In parallel,
the framework integrates adaptive reasoning mechanisms that dynamically adjust exploration strategies
based on feedback signals such as constraint violations, PPA degradation, or convergence stagnation.
Reasoning chains are established to trace the causal relationships between design choices and perfor-
mance outcomes, enabling explainable inference and reduced decision uncertainty. In the context of L1
to L3 levels of DSE module, we propose a modularized reasoning and adaptive decision-making framework
to facilitate increasing autonomy and effectiveness at each level.

At L1, the modular reasoning framework plays a supporting role. LLMs assist human experts by
organizing and structuring design parameters into modular units. For example, sub-decisions like archi-
tectural parameter tuning and pipeline configuration can be structured into modules, enabling the LLM
to propose initial configurations. The modular approach simplifies the management of multiple design
parameters, but human experts still provide final decisions. Adaptive decision-making here primarily sup-
ports experts by flagging potential issues (e.g., performance degradation or constraint violations) based



Sci China Inf Sci 22

on the modular structure, without taking full control.

At L2, the LLM can autonomously apply modular reasoning to evaluate and optimize design configu-
rations. The framework will allow the LLM to perform more sophisticated analyses, such as dynamically
adjusting strategies based on the feedback from previous iterations. For example, if a configuration vio-
lates constraints or results in PPA degradation, the LLM can adjust its exploration strategies by altering
specific modules (e.g., adjusting power gating strategies or reconfiguring pipeline depth). The integra-
tion of adaptive reasoning ensures that the LLM can autonomously adjust the design space exploration
process and make iterative improvements based on the feedback loop from simulation results.

At L3, the modular reasoning and adaptive decision-making framework allows the LLM to take com-
plete control of the design space exploration process. The LLM independently generates and optimizes
designs by making decisions across multiple modules and adapting its exploration strategy based on con-
tinuous feedback. Reasoning chains will enable the LLM to link design choices to performance outcomes,
facilitating self-correction and improving design decisions autonomously. This results in fully optimized
configurations and performance metrics without the need for human intervention.

Online Learning with Unified Knowledge Graph Integration. To realize continuous adapta-
tion and system-wide design intelligence, we introduce a unified knowledge graph framework coupled with
online learning capabilities. The knowledge graph integrates heterogeneous data sources across abstrac-
tion layers, including microarchitectural configurations, RTL component libraries, EDA constraints, and
empirical performance logs. Through a RAG-enabled interface, the LLM can retrieve relevant subgraphs
in real time to inform design decisions, enabling contextual awareness and accurate cross-domain reason-
ing. Online learning pipelines are incorporated to incrementally refine the LLM’s internal representation
using newly acquired simulation results, verification outcomes, and emerging design patterns. This setup
allows the system to autonomously evolve its design knowledge, adapt to novel hardware requirements,
and remain aligned with the state of the art in CPU architecture and optimization techniques. In line
with the increasing autonomy at each level of DSE, we introduce an online learning framework that
leverages a unified knowledge graph to enable continuous adaptation of the LLM.

At L1, the knowledge graph serves as a central repository for organizing and referencing domain-specific
information, such as component libraries and design constraints. The LLM can query the graph to suggest
candidate solutions, but the expert remains in control of integrating new data. While online learning is
limited at this stage, the system can assist in refining the decision-making process by providing relevant
information and drawing from historical data for the experts.

At L2, the knowledge graph becomes more interactive, with the LLM retrieving real-time data from
the graph to refine its design decisions. The integration of online learning allows the system to update its
knowledge continuously based on simulation results and verification outcomes. As the LLM autonomously
explores design configurations, it can incorporate new performance data, thereby improving its decision-
making accuracy over time. The system becomes increasingly efficient in suggesting configurations that
meet design goals based on updated knowledge and feedback.

At L3, the knowledge graph is fully integrated into the LLM’s decision-making process. The LLM
can autonomously query the graph for relevant data and adjust its optimization strategy based on newly
acquired insights. The online learning pipeline allows the system to evolve continuously, adapting to
emerging design patterns and technological advancements. The LLM uses the updated knowledge base
to drive its optimization process, making decisions based on the most current and relevant data available,
ensuring that the design process stays aligned with cutting-edge developments.

7 HDL generation module

7.1 Motivation

The Hardware Description Language (HDL) generation module automatically creates executable HDL
code based on the optimal design generated by the above Design Space Exploration Agent. It pro-
cesses diverse inputs such as natural language specifications, C code, and control flow graphs to interpret
design parameters and perform system-level dynamic optimization using a pre-trained model. The mod-
ule includes an input interface, a multimodal HDL generator, and a PPA (Power, Performance, Area)
prediction feedback mechanism to ensure functional correctness and performance optimization.

As chip design complexity grows, integrating HDL generation into large processor chip models becomes



Sci China Inf Sci 23

essential—not only to enhance efficiency and reduce human errors, but also to achieve global optimization.
This approach overcomes the limitations of traditional manual HDL writing while enabling cross-layer
optimization, resulting in a more efficient and accurate design process. Below are key reasons why HDL
generation should be embedded within such models.

e Collaborative Optimization for Global Optimality
Cross-layer collaborative optimization integrates HDL generation into system-level modeling frameworks,
enabling seamless coordination between different design layers. By establishing closed-loop feedback
among compilation optimizations, simulation tools, and design space exploration, this approach not only
enhances design correctness and performance but also ensures component compatibility and consistency,
driving toward a globally optimal solution.
Consider the case of a complex microprocessor design. If HDL coding is done in isolation, it might result
in under-use of available resources or suboptimal trade-offs between power consumption and performance
due to ineffective communication with other design layers. However, by adopting a multimodal modeling
approach at the system level, designers can make more informed decisions based on comprehensive data
analysis, leading to an optimized overall design.

e Overcoming Limitations of Existing RTL Generation
Traditional RTL code generation methods often suffer from incomplete information and insufficient val-
idation feedback, making it difficult to guarantee the accuracy of the generated code. Without robust
verification mechanisms, errors can propagate unchecked. In contrast, modern large-scale processor chip
models incorporate end-to-end support, from compilation optimization to simulation and design space
exploration, establishing a closed-loop feedback system that significantly improves design reliability and
correctness.
Handling highly complex hardware design requirements, such as architectural intricacies and resource
constraints, poses significant challenges for traditional approaches, often leading to impractical designs
or overly complex training and inference processes. Advanced large processor chip models offer a more
effective solution by streamlining these complexities, enabling efficient automation of HDL generation
while ensuring scalability and adaptability to diverse design constraints.

7.2 Overview of HDL Generation Module

7.2.1 Development Stages

We describe HDL generation across the following three levels. Currently, we are at level 3.

e Level 1: Prompt-centric Copilot. In this initial stage, general LLMs are used to generate HDL
code. Debugging prompts play a crucial role here. Previous works directly prompt LLMs to generate
HDL code or explore prompt optimization using feedback from EDA tools.

e Level 2: Fine-tuning Submodel. In the fine-tuning stage, the HDL model is one of the submodels
of LPCM. It has two key characteristics. Large models fine-tuned on domain-specific datasets are used
to generate HDL code. Although these training datasets are limited and do not yet encompass all multi-
modal data, significant progress has been made. Agents are employed to optimize models for HDL code
generation, though their applications remain somewhat narrow and lack comprehensive coverage.

e Level 3: MLM-governed Submodel. In this stage, the MLM-governed submodel of LPCM
leverages fully trained Multimodal Large Models (MLMs) to autonomously generate HDL code during
the chip design process. These MLMs operate independently, invoking external tools without human
intervention.

Table 1 Comparison of Different Levels of HDL Generation Systems

Level Does the Model Require Training? How EDA Tools Are Used?

Level 1 | No training: General-purpose LLMs generate | Passive verification: EDA tools verify HDL

HDL code directly. code without participating in generation.

Level 2 | Fine-tuned: Large models adapt to domain- | Active optimization: EDA tools act as agents,

specific datasets for accurate HDL generation. | refining HDL code via feedback.

Level 3 | Full training: Multimodal LLMs (MLMs) are | Full integration: EDA tools and MLM co-

sign. tion.

trained end-to-end for autonomous HDL de- | execute autonomous verification and optimiza-




Sci China Inf Sci 24

. Multimodal Design description HOL-MLM PPA Prediction
Train LPCM NLP, C. graph, ——> RTL Train
dataset table Simulator
Design Space T HDL-MLM Design
Inference  Exploraton —> _fmput ) Knowledge Prompt —> Proposals
Agent Design description paG base Inference

f

LLM Evaluation

Qut: Decision description Simulator Evaluation In: HDL and
Comments

Figure 9 HDL Level 3 workflow: MLM-Governed

7.2.2 Related work

Direct Prompting and Feedback-Driven Optimization. Prior research has explored the direct use of LLMs
to generate HDL code. For instance, Chip-chat [86] designed an 8-bit accumulator-based microprocessor
using commercial LLMs. Other studies [87,88] investigate prompt optimization through feedback from
EDA tools. AutoChip [87] leverages error reports from compilers and simulators to help LLMs correct
faulty code, while MEMV [88] employs a Monte Carlo tree-search algorithm to improve the correctness
and PPA efficiency of generated code based on feedback from compilers and synthesis tools. OriGen [89]
uses a self-reflection mechanism guided by compiler feedback to fix syntactic errors in the generated code.

Fine-Tuning Strategies. VeriGen [90] performs continual pre-training by predicting the next token on
corpora from open-source code and textbooks. VerilogEval [91] applies supervised fine-tuning (SFT) using
synthetic instruction-code pairs and releases an open-source evaluation dataset containing 156 questions
with golden solutions. MEV-LLM [92] fine-tunes LLMs for hardware designs of varying complexity and
integrates them into a unified framework. ChipNeMo [21] customizes LLMs for applications, including
chatbots, EDA script generation, and bug summarization. RTLCoder [22] introduces a fine-tuning al-
gorithm that evaluates code quality on candidate samples generated by pre-trained LLMs. BetterV [23]
optimizes Verilog code generation using generative discriminators, while CodeV [93] constructs a fine-
tuning dataset by generating multi-level Verilog code summaries with LLMs.

Agent-based approaches improve HDL generation by integrating simulation feedback throughout the
code generation pipeline, covering planning, verification, and iterative refinement. RTLLM [94] evalu-
ates syntax correctness, functional accuracy, and design quality, while ITERTL [95] iteratively optimizes
training data using RTL tool feedback. Multi-agent systems [96-98] enhance reliability through spe-
cialized agents, such as those handling RTL coding, testbench generation, validation, and debugging,
collaborating in a recursive framework to produce optimized implementations.

7.3 Proposed MLM-governed HDL module design

The MLM-HDL model is trained using chip design data generated by upstream modules. The training
data consists of natural language descriptions, circuit diagrams, tables, and C code, paired with the corre-
sponding HDL code. The architecture simulator provides supervisory signals to fine-tune the multimodal
model, enabling it to incorporate the physical meaning of chip designs.

During inference, the model accepts design parameters from the DSE Agent and generates optimized
HDL code. This output undergoes verification through EDA tools, with simulation-validated feedback
enabling continuous design refinement. The system achieves complete automation from high-level speci-
fications to production-ready HDL implementation.

Key capabilities include:

e Automated Design Process. The system achieves a fully autonomous design loop where large models
can generate complete HDL code from high-level descriptions including functional requirements and
performance metrics. This enables end-to-end implementation from initial concept to final physical design
without human intervention. The models perform cross-layer optimization by integrating simulation tools,
verification platforms, and synthesis tools to ensure the generated code meets specific design constraints



Sci China Inf Sci 25

such as power consumption, performance, and area requirements. Through hardware-software co-design,
they maintain consistency across design layers while achieving overall performance optimization.

e Efficient Quality Assurance Based on RTL-Level PPA Prediction. We propose a multimodal PPA
prediction model for RTL-stage design, integrating both LLMs and graph neural networks (GNNs).
First, we leverage fine-tuned LLMs to encode high-level functional and structural information directly
from RTL code, focusing in particular on register and critical logic descriptions. Meanwhile, we map
the synthesized netlist into a standard-cell graph, allowing a GNN to capture granular structural and
timing dependencies. Through methods such as adaptive aggregation and two-phase propagation, the
GNN efficiently models local circuit behaviors, while global functionality insights come from the LLM,
achieving more accurate PPA predictions even as circuit size grows. On top of this multimodal fusion,
our training framework adopts knowledge distillation from a layout-aware “teacher” model to guide the
RTL-level “student” model toward near sign-off precision on key metrics like arrival time and power. By
aligning node-, subgraph-, and global-level features, the student progressively assimilates timing-critical
and layout-specific knowledge. This strategy not only narrows the accuracy gap between RTL and post-
layout predictions but also preserves efficiency through a lightweight GNN-based student, making it
highly practical for early-stage design exploration.

e Precision Control and Optimization. A feedback-based learning mechanism enables continuous im-
provement by incorporating EDA toolchain feedback. When initial designs fail to meet PPA standards,
the models dynamically adjust parameters or architectural choices to regenerate optimized HDL code.
The system also generates innovative design proposals by incorporating cutting-edge research, such as
creating HDL implementations for emerging memory technologies or quantum computing architectures.

e Efficient Collaboration Under Human Guidance. The process maintains goal-oriented design where
human designers set high-level objectives like ”design a low-power IoT processor” while the model handles
implementation details. This approach supports rapid iteration and prototype development, allowing
designers to quickly test concepts and refine versions, significantly accelerating time-to-market while
enhancing design quality and innovation potential.

In conclusion, HDL-MLMs are transforming HDL generation and optimization through domain exper-
tise integration, workflow automation, and feedback-driven learning, revolutionizing traditional design
methodologies.

8 Put Them All Together

As shown in Figure 10, the framework accepts two input types: binary applications or high-level design
specifications, both of which generate an intermediate target code representation.

The SW/HW Partitioning Agent analyzes this representation to determine optimal hardware-software
boundaries while respecting the area and power constraints. This agent works alongside the Compiler
Agent, which generates appropriate compiler implementations and processes code according to the spec-
ified ISA. The rewritten code then enters the design space exploration phase conducted by parallel CPU
and Co-Processor DSE Agents. These agents work in tandem with the Simulator Agent, continuously
refining architectural proposals through iterative evaluation.

Once an optimal SoC design emerges, the HDL Generation Agent produces RTL code, which undergoes
further refinement by the PPA Prediction & Code Optimization Agent. The framework ultimately delivers
four key outputs: ISA specifications, compiler implementations, firmware, and the physical SoC.

8.1 Gradual LLM Integration

The LPCM framework implements a graduated approach to integrating LLMs into the system architec-
ture design process, progressing through three distinct levels of automation and integration. Each level
represents an advancement in the role, capabilities, and autonomy of LLMs within the design workflow.

e Level 1: Human-Centric with LLIM Assistance. At this level, human designers remain the
primary decision-makers, with LLMs functioning as assistive tools. Experts define design requirements,
make architectural decisions, and execute core design tasks, while LLMs provide supplementary support
such as code generation, documentation assistance, and reference information retrieval. The workflow
begins with human designers establishing clear specifications and constraints. LLMs then assist by
generating code snippets, suggesting optimization approaches, or retrieving relevant examples from prior



Sci China Inf Sci 26

. 2
hrea: < o > SW/HW < Simulator
. Partitioning Agent Agent
——
Constraints % # [r- S Area: 5.24mm?
C ° + % Power: 1.2W
SW | HW SoC SW Perf: 7.04x10"%Ticks
. Binary Translation ; Co-Processor
@ —> Agent Compiler Agent m)n CPU DSE Agent DSE Agent
Binary App Code
Design Space Exploration i
¢ BestSoC
Target
Code .
HDL Generation
—> Query Agent Agent
Design/Algorithm/ RTL PPA&
Requirements Code New Code
Large Processor Chi
g P PPA Prediction &
Model (LPCM) Code Optimization
Agent
y A 4 Y

\
S [7 Compiler Firmware % 80

Figure 10 The end-to-end LPCM flow

designs. Human experts carefully review, modify, and integrate all LLM-generated content into the
overall design. Verification and validation processes remain entirely under human control, with LLMs
contributing only to specific subtasks within well-defined boundaries. LLMs focus on enhancing designer
productivity rather than making autonomous decisions.

e Level 2: Agent-Orchestrated with Multi-submodule Cooperation. This level represents
a significant advancement in automation, where LLM-based agents coordinate activities across multiple
design modules with reduced human intervention. These agents possess greater domain-specific knowl-
edge and can handle routine decision-making tasks autonomously while still operating within frameworks
established by human designers. Each module incorporates specialized agent capabilities tailored to its
domain. For example, in the Compiler module, agents can autonomously perform code analysis, optimiza-
tion selection, and transformation application. In the Hardware/Software Partitioning module, agents
can identify code segments amenable to hardware acceleration and propose partitioning strategies. These
module-specific agents coordinate through standardized interfaces, exchanging structured information
and collaborating to solve cross-domain challenges. The interaction becomes bidirectional —LLMs ana-
lyze performance feedback and propose design adjustments, while experts refine constraints or objectives
as needed.

e Level 3: LLM-Governed Autonomous Generation. This level represents a transformative
shift where LLMs assume primary control over the entire design process. Humans provide only high-
level objectives and constraints, while LLMs autonomously execute the complete design workflow from
requirements analysis through implementation. The LLM-governed system exhibits advanced reasoning
capabilities, domain expertise across the entire system stack, and the ability to make sophisticated trade-
offs between competing design objectives. The workflow begins with minimal human input, typically a
concise description of functional requirements and design constraints. The system then autonomously de-
composes these requirements into specific tasks, coordinates execution across modules, evaluates multiple
design alternatives, and progressively refines solutions based on performance feedback. It can identify and
resolve conflicts between requirements, explore unconventional design approaches, and provide detailed
explanations for its design decisions, achieving a high degree of autonomy in hardware design.

8.2 Case Study: 3D Gaussian Splatting

This section demonstrates the effectiveness of LPCM through a practical application to 3D Gaussian
Splatting (3DGS), an emerging rendering technique that has garnered significant attention for its ability
to deliver high-quality visual experiences with improved performance. 3DGS represents scenes using a
collection of 3D Gaussian primitives, providing a balance between quality and rendering speed that is



Sci China Inf Sci 27

Memory Units

‘ PDHU ‘ ‘ SCTU l BSU
REGFILE CACHE SCRATCHPAD
1KB 2KB 8KB

ccu l scu J
SCRATCHPAD REGFILE
1KB 1KB

‘ Compute Units
v
MMU PPU FCU
CACHE Vector Unit .
16KB Lanes: 16 PEs: 6
X
1 |

Figure 11 The 3DGS accelerator designed by the LPCM flow

crucial for applications in virtual reality, scientific visualization, and computer graphics.

The workflow begins with two parallel paths of input processing. While the Binary Translation Agent
can process executable applications, in this case study, we focus on the path through the Query Agent.
The Query Agent conducts a comprehensive search across multiple GitHub repositories to identify various
implementations of the 3DGS rendering algorithm. During this process, the agent evaluates multiple can-
didate codebases, comparing their quality metrics such as implementation completeness, code efficiency,
and documentation quality. After thorough analysis and comparison, the agent selected the implementa-
tion from the repository cited in [99] as the optimal choice due to its alignment with the design objectives.
This particular implementation stood out for its comprehensive feature set and platform versatility, offer-
ing a complete implementation that could run efficiently on CPU architecture rather than being highly
platform-dependent.

Simultaneously, the framework receives design constraints specifying requirements of area less than
6mm? and power consumption under 2W, which directly inform the SW/HW Partitioning Agent’s
decision-making process.

The Target Code from the Query Agent is then passed to the Compiler Agent, which compiles it for
the target CPU platform, generating an executable binary with comprehensive debug information. This
debug-enabled binary preserves the algorithmic essence while enabling detailed runtime analysis. Then
the SW/HW Partitioning Agent uses this instrumented executable to identify acceleration candidates,
recognizing pixel coordinate transformations, conic term calculations, and power sum computations as
prime hardware acceleration targets, while maintaining control logic in software. The resulting design
specifies clear interfaces between software and hardware components.

Based on this partitioning, the Compiler Agent generates optimized code for both software execu-
tion and hardware implementation. This involves producing rewritten code that incorporates extended
instructions to access hardware-accelerated components. The compiler specifically creates custom in-
struction extensions that allow the CPU to efficiently communicate with and offload computations to
the specialized co-processor units. In addition, this stage also outputs detailed specifications for these
extended instructions that define their functionality and interface, and a modified compiler toolchain that
supports the new extension to the instruction set.

The Design Space Exploration Agent, comprising the Co-Processor DSE Agent and CPU DSE Agent,
evaluates various architectural configurations to optimize performance under the given constraints. For
3DGS, this exploration focuses on finding the optimal balance between computational units, memory
hierarchy, and the interconnect structure. The exploration process evaluates different configurations of
CPU and co-processor choices and their parameters, and memory sizes to maximize rendering throughput
while meeting the area and power constraints.

Following the identification of the optimal architecture, the HDL Generation Agent translates the
architectural specification into RTL code that describes the hardware implementation. For the 3DGS
accelerator, this includes generating descriptions for specialized units such as the Pixel Processing Unit
with its 16-lane vector unit, the Feature Computation Unit with its 6 processing elements, and memory
management units with their respective storage capacities, as shown in Figure 11.

Finally, the PPA Prediction & Code Optimization Agent refines the implementation to ensure it meets
the target constraints. For our 3DGS case, the final design achieves an area of 5.24mm? and power



Sci China Inf Sci 28

consumption of 1.2W, comfortably within the specified constraints. Performance analysis shows a 1.41x
speedup over a high-performance NVIDIA A100 GPU while requiring only a fraction of the chip area.

8.3 Challenges and Future Planning

As we advance our Large Processor Chip Model toward higher levels of automation and integration,
several significant challenges must be addressed. This section outlines these challenges and our strategies
for overcoming them.

8.3.1 Multi-modal Knowledge Integration and Transfer

A significant challenge lies in integrating and transferring knowledge across diverse modalities and do-
mains within the LPCM framework. Each module operates on different data representations—including
source code, compiler intermediate representations, task graphs, architectural specifications, and hard-
ware description languages—making knowledge sharing inherently difficult. Furthermore, optimization
techniques that prove effective in one domain may not directly translate to others without substantial
adaptation.

To address this challenge, we are developing advanced multi-modal learning frameworks capable of
extracting, representing, and transferring knowledge across domains. Our approach leverages techniques
from transfer learning and multi-task learning to identify generalizable patterns and principles that apply
across abstraction levels. By training models on paired examples from different domains, such as software
implementations and corresponding hardware accelerators.

We are also establishing comprehensive knowledge repositories that capture design patterns, opti-
mization strategies, and architectural templates across domains. These repositories employ structured
knowledge representations that facilitate retrieval and application in new design contexts. By explicitly
modeling the relationships between patterns in different domains, we can more effectively transfer suc-
cessful approaches across abstraction boundaries. This knowledge-sharing infrastructure is complemented
by continual learning mechanisms that progressively enhance the system’s capabilities based on design
experience, enabling it to recognize increasingly complex cross-domain opportunities.

8.3.2 Verification and Trustworthiness of Autonomous Design Decisions

As the LPCM framework progresses toward higher levels of automation, ensuring the verification and
trustworthiness of autonomously generated designs becomes increasingly critical. Traditional verification
methodologies that rely heavily on human oversight become impractical as the system assumes greater
responsibility for design decisions. Establishing confidence in the correctness, optimality, and robustness
of automatically generated architectures presents significant technical and methodological challenges.

Our approach to addressing this challenge incorporates multiple complementary strategies. First,
we are integrating formal verification techniques throughout the design flow. These techniques provide
mathematical guarantees about specific properties of the generated designs, such as functional correctness,
timing compliance, and security characteristics. By formally verifying critical aspects of the design, we
can provide stronger assurances than possible with traditional simulation-based approaches. We are
particularly focused on compositional verification methods that can scale to complex system architectures
by verifying components individually and their interactions systematically.

Second, we are establishing comprehensive validation frameworks that test generated designs against
diverse workloads and operating conditions. These frameworks employ systematic testing strategies to
explore the design’s behavior across nominal and edge cases, identifying potential weaknesses before
implementation. By subjecting designs to rigorous validation, we can identify and address potential
issues early in the development process, increasing confidence in the final implementation.

Finally, we are developing incremental automation approaches that gradually transfer responsibility
from human designers to the autonomous system as confidence in its capabilities increases. This pro-
gressive autonomy enables the system to establish a track record of successful designs in limited contexts
before tackling more complex challenges. By carefully managing this transition, we can build trust in the
system’s capabilities while minimizing the risks associated with autonomous design decisions.



Sci China Inf Sci 29

8.3.3  Cross-Layer Optimization in Heterogeneous Design Spaces

A fundamental challenge in developing an effective LPCM framework lies in achieving true cross-layer op-
timization across heterogeneous design spaces. Traditional design methodologies typically optimize each
architectural layer independently—application, algorithm, compiler, instruction set, microarchitecture,
and circuit implementation, leading to suboptimal global solutions. When design decisions at one layer
constrain options at another without coordination, the resulting architectures often exhibit inefficiencies
that could be avoided through holistic optimization. This challenge is exacerbated in domain-specific
architectures, where the interdependencies between software and hardware design choices become in-
creasingly complex and the potential performance gains from cross-layer optimization grow substantially.

The difficulty stems from several factors: first, the design spaces at different layers are inherently
heterogeneous, with distinct representations and optimization metrics that complicate joint exploration.
Second, the causal relationships between design decisions across layers are often complex and non-obvious,
making it difficult to predict how changes at one layer will propagate through the system. Third, the
sheer dimensionality of the combined design space makes exhaustive exploration infeasible, necessitating
intelligent navigation strategies that can identify promising cross-layer optimization opportunities.

To address this challenge, we are pursuing several innovative approaches. One promising direction
involves reinforcement learning finetuning techniques for cross-layer optimization. By formulating the
design process as a sequential decision-making problem, we can train RL agents to make coordinated de-
sign choices across multiple layers simultaneously. These agents learn to navigate the complex cross-layer
design space through experience, discovering optimization strategies that may not be apparent through
conventional methods. The RL framework enables explicit modeling of the long-term performance impli-
cations of design decisions, allowing the system to make early-stage choices that facilitate more effective
optimization at later stages.

Another innovative approach we are exploring is Critique Finetuning for knowledge alignment across
architectural domains. This method leverages expert feedback to critically evaluate design decisions
and their cross-layer implications, progressively refining the system’s understanding of effective design
patterns.

9 Conclusion

Research in computer system architecture has evolved significantly, spanning from quantum computing to
large-scale data centers, characterized by an unprecedented rate of development, broad impact, and deep
influence. Nevertheless, current approaches in this field continue to depend heavily on the conventional
process of "research design-experimental verification-data analysis,” which presents challenges such as
inefficiency, variable quality, and difficulties in replicability. The rise of large language models (LLMs),
noted for their sophisticated learning, reasoning, and planning capabilities, offers exciting opportunities
for reshaping the paradigm of computer system architecture research. In this context, this paper presents
a Large Processor Chip Model (LPCM). It organizes its development into three levels and explores
various dimensions, including task complexity, model processing capabilities, and trends in technological
evolution. This paper further explores the specific realization paths and technical details related to six key
aspects: compiler design, binary translation, simulator design, hardware and software partitioning, design
space exploration, and RTL design and generation, across various levels. Additionally, this paper utilizes
3D Gaussian Splatting (3DGS) as a representative workload to examine the LPCM design methodology
and operational flow at Level 1, emphasizing the benefits of LPCM in improving design efficiency and
quality. Finally, this paper provides an in-depth analysis of the challenges and potential solutions related
to the development of LPCM. In conclusion, LPCM is poised to transform the current methodologies of
computer system architecture design, steering the information infrastructure towards greater intelligence
and automation, while paving the way for new advancements in information technology.



Sci China Inf Sci 30

References
1 Hennessy J L, Patterson D A. A new golden age for computer architecture. Communications of the ACM, 2019, 62: 48-60
2 Berkeley Logic Synthesis and Verification Group. Abc: A system for sequential logic synthesis and formal verification. URL
https://people.eecs.berkeley.edu/~alanmi/abc/
3 Edwards T. Open circuit design. URL http://opencircuitdesign.com/
4 The OpenROAD Project. Opensta: A static timing analysis tool. URL https://github.com/The-OpenROAD-Project/
OpenSTA
5 Icarus Verilog Development Team. Icarus verilog. URL https://steveicarus.github.io/iverilog/
6 Wolf C, Glaser J. Yosys - a free verilog synthesis suite. URL https://github.com/YosysHQ/yosys
7 Schafer B C, Takenaka T, Wakabayashi K. Adaptive simulated annealer for high level synthesis design space exploration. In:
2009 International Symposium on VLSI Design, Automation and Test, 2009. 106-109
8 Mahapatra A, Schafer B C. Machine-learning based simulated annealer method for high level synthesis design space explo-
ration. In: Proceedings of the 2014 Electronic System Level Synthesis Conference (ESLsyn), 2014. 1-6
9 Brayton R K, Hachtel G D, McMullen C, et al. Logic minimization algorithms for VLSI synthesis, volume 2. 1984, 1984
10 Keutzer K. Dagon: Technology binding and local optimization by dag matching. In: Proceedings of the 24th ACM/IEEE
Design Automation Conference, 1987. 341-347
11 Grosnit A, Malherbe C, Tutunov R, et al. Boils: Bayesian optimisation for logic synthesis. In: 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2022. 1193-1196
12 Cheng C K, Kahng A B, Kang I, et al. Replace: Advancing solution quality and routability validation in global placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 38: 1717-1730
13 Singh K J, Wang A R, Brayton R K, et al. Timing optimization of combinational logic. In: 1988 IEEE International
Conference on Computer-Aided Design, 1988. 282-283
14 Ajayi T, Chhabria V A, Fogaca M, et al. Toward an open-source digital flow: First learnings from the openroad project. In:
Proceedings of the 56th Annual Design Automation Conference 2019, 2019. 14
15 Carrion Schafer B, Wakabayashi K. Machine learning predictive modelling high-level synthesis design space exploration. IET
computers & digital techniques, 2012, 6: 153-159
16 Zuluaga M, Krause A, Milder P, et al. ” smart” design space sampling to predict pareto-optimal solutions. In: Proceedings
of the 13th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and Theory for Embedded
Systems, 2012. 119-128
17 Ferianc M, Fan H, Chu R S, et al. Improving performance estimation for fpga-based accelerators for convolutional neural
networks. In: Applied Reconfigurable Computing. Architectures, Tools, and Applications: 16th International Symposium,
ARC 2020, Toledo, Spain, April 1-3, 2020, Proceedings 16, 2020. 3-13
18 Mirhoseini A, Goldie A, Yazgan M, et al. Chip placement with deep reinforcement learning. arXiv preprint arXiv:2004.10746,
2020
19 He Y, Bao F S. Circuit routing using monte carlo tree search and deep neural networks. arXiv preprint arXiv:2006.13607,
2020
20 Alawieh M B, Li W, Lin Y, et al. High-definition routing congestion prediction for large-scale FPGAs. In: Proceedings of
the Asia and South Pacific Design Automation Conference, 2020. 26-31
21 Liu M, Ene T, Kirby R, et al. Chipnemo: Domain-adapted llms for chip design. CoRR, 2023, abs/2311.00176. URL
https://doi.org/10.48550/arXiv.2311.00176
22 Liu S, Fang W, Lu Y, et al. Rtlcoder: Outperforming GPT-3.5 in design RTL generation with our open-source dataset and
lightweight solution. CoRR, 2023, abs/2312.08617. URL https://doi.org/10.48550/arXiv.2312.08617
23 PeiZ, Zhen H, Yuan M, et al. Betterv: Controlled verilog generation with discriminative guidance. In: Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024. URL https://openreview.net/forum?
id=jKnWT7r7del
24 Wu H, He Z, Zhang X, et al. Chateda: A large language model powered autonomous agent for eda. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024
25 Chang K, Wang Y, Ren H, et al. Chipgpt: How far are we from natural language hardware design. CoRR, 2023,
abs/2305.14019. URL https://doi.org/10.48550/arXiv.2305.14019
26 Fang W, Li M, Li M, et al. Assertllm: Generating and evaluating hardware verification assertions from design specifications
via multi-llms. arXiv preprint arXiv:2402.00386, 2024
27 Tsai Y, Liu M, Ren H. Rtlfixer: Automatically fixing rtl syntax errors with large language model. In: Proceedings of the
61st ACM/IEEE Design Automation Conference, 2024. 1-6
28 Nguyen A T, Nguyen T T, Nguyen T N. Divide-and-conquer approach for multi-phase statistical migration for source code
(t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2015. 585-596
29 Chen X, Liu C, Song D. Tree-to-tree neural networks for program translation. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018. 2552-2562
30 Feng Z, Guo D, Tang D, et al. Codebert: A pre-trained model for programming and natural languages, 2020
31 Wang Y, Wang W, Joty S, et al. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding
and generation, 2021
32 Zhong M, Lyu F, Wang L, et al. Comback: A versatile dataset for enhancing compiler backend development efficiency. In:
The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024
33 Zhang S, Zhao J, Xia C, et al. Introducing compiler semantics into large language models as programming language translators:
A case study of C to x86 assembly. 2024: 996-1011. URL https://aclanthology.org/2024.findings-emnlp.55/
34 Chen Y, Mendis C, Carbin M, et al. Vegen: a vectorizer generator for simd and beyond. In: Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems, 2021. 902-914
35 Armengol-Estapé J, O’Boyle M F. Learning c to x86 translation: An experiment in neural compilation. arXiv preprint
arXiv:2108.07639, 2021
36 Guo Z C, Moses W S. Enabling transformers to understand low-level programs. In: 2022 IEEE High Performance Extreme
Computing Conference (HPEC), 2022. 1-9
37 facebookarchive. Bolt: Binary optimization and layout tool. https://github.com/facebookarchive/BOLT, 2023. Archived on
Jul 1, 2023. Part of the LLVM project.
38 Panchenko M, Auler R, Sakka L, et al. Lightning bolt: powerful, fast, and scalable binary optimization. In: Proceedings of
the 30th ACM SIGPLAN International Conference on Compiler Construction, 2021. 119-130
39 Wong W K, Wang H, Li Z, et al. Refining decompiled c¢ code with large language models. arXiv preprint arXiv:2310.06530,
2023
40 Armengol-Estapé J, Rocha R C, Woodruff J, et al. Forklift: An extensible neural lifter. arXiv preprint arXiv:2404.16041,
2024
41 Tan H, Luo Q, Li J, et al. Llm4decompile: Decompiling binary code with large language models. arXiv preprint


https://people.eecs.berkeley.edu/~alanmi/abc/
http://opencircuitdesign.com/
https://github.com/The-OpenROAD-Project/OpenSTA
https://github.com/The-OpenROAD-Project/OpenSTA
https://steveicarus.github.io/iverilog/
https://github.com/YosysHQ/yosys
https://doi.org/10.48550/arXiv.2311.00176
https://doi.org/10.48550/arXiv.2312.08617
https://openreview.net/forum?id=jKnW7r7de1
https://openreview.net/forum?id=jKnW7r7de1
https://doi.org/10.48550/arXiv.2305.14019
https://aclanthology.org/2024.findings-emnlp.55/
https://github.com/facebookarchive/BOLT

42

43

44

45

47

48

49

50

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

s

78

Sci China Inf Sci 31

arXiv:2403.05286, 2024

Binkert N, Beckmann B, Black G, et al. The gem5 simulator. SIGARCH Comput. Archit. News, 2011, 39: 1-7. URL
https://doi.org/10.1145/2024716.2024718

Lowe-Power J, Ahmad A M, Akram A, et al. The gem5 simulator: Version 20.0+, 2020. URL https://arxiv.org/abs/2007.
03152

Jiang N, Becker D U, Michelogiannakis G, et al. A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2013. 86-96

Bellard F. Qemu, a fast and portable dynamic translator. 2005: 41

DeepSeek-Al, Liu A, Feng B, et al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437

Kerbl B, Kopanas G, Leimkiihler T, et al. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on
Graphics, 2023, 42. URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Shao Y S, Xi S L, Srinivasan V, et al. Co-designing accelerators and soc interfaces using gem5-aladdin. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016. 1-12

Eles P, Peng Z, Kuchcinski K, et al. System level hardware/software partitioning based on simulated annealing and tabu
search. Design automation for embedded systems, 1997, 2: 5-32

Lo V M. Heuristic algorithms for task assignment in distributed systems. IEEE Transactions on computers, 1988, 37:
1384-1397

Holland J H. Genetic algorithms. Scientific american, 1992, 267: 66-73

Zou Y, Zhuang Z, Chen H. Hw-sw partitioning based on genetic algorithm. In: Proceedings of the 2004 Congress on
Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004, volume 1. 628-633

Van Laarhoven P J, Aarts E H, van Laarhoven P J, et al. Simulated annealing. 1987, 1987

Selman B, Gomes C P. Hill-climbing search. Encyclopedia of cognitive science, 2006, 81: 10

Ipek E, McKee S A, Caruana R, et al. Efficiently exploring architectural design spaces via predictive modeling. In: J P Shen,
M Martonosi, eds., Proceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, 2006. 195-206

Li D, Yao S, Liu Y, et al. Efficient design space exploration via statistical sampling and adaboost learning. In: DAC, Austin,
TX, USA, June 5-9, 2016, 2016. 142:1-142:6

Wang D, Yan M, Liu X, et al. A High-accurate Multi-objective Exploration Framework for Design Space of CPU. In: DAC’23:
60th ACM/IEEE Design Automation Conference, San Francisco, California, USA, July 9 - 13, 2023, 2023

Wang D, Yan M, Teng Y, et al. MoDSE: A high-accurate multiobjective design space exploration framework for CPU
microarchitectures. 43: 1525-1537

Joseph P J, Vaswani K, Thazhuthaveetil M J. Construction and use of linear regression models for processor performance
analysis. In: 12th International Symposium on High-Performance Computer Architecture, HPCA-12 2006, Austin, Texas,
USA, February 11-15, 2006, 2006. 99-108

Lee B C, Brooks D M. Accurate and efficient regression modeling for microarchitectural performance and power prediction.
In: J P Shen, M Martonosi, eds., Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, 2006. 185-194

Chen T, Guo Q, Tang K, et al. ArchRanker: A ranking approach to design space exploration. In: ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, 2014. 85-96
Xue R, Wu H, Yan M, et al. Multi-objective optimization in cpu design space exploration: Attention is all you need. arXiv
preprint arXiv:2410.18368, 2024

Bai C, Sun Q, Zhai J, et al. BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration Framework.
In: IEEE/ACM International Conference On Computer Aided Design, ICCAD 2021, Munich, Germany, November 1-4, 2021,
2021. 1-9

Zhai J, Bai C, Zhu B, et al. McPAT-Calib: A RISC-V BOOM Microarchitecture Power Modeling Framework. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42: 243-256

Wang D, Yan M, Teng Y, et al. A High-accurate Multi-objective Ensemble Exploration Framework for Design Space of CPU
Microarchitecture. In: Proceedings of the Great Lakes Symposium on VLSI 2023, Knoxville, TN, USA, June 5-7, 2023.
379-383

Li D, Wang S, Yao S, et al. Efficient design space exploration by knowledge transfer. In: Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES 2016, Pittsburgh,
Pennsylvania, USA, October 1-7, 2016, 2016. 12:1-12:10

Li D, Yao S, Wang S, et al. Cross-program design space exploration by ensemble transfer learning. In: S Parameswaran,
ed., 2017 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2017, Irvine, CA, USA, November 13-16,
2017, 2017. 201-208

Ding Y, Mishra N, Hoffmann H. Generative and multi-phase learning for computer systems optimization. In: S B Manne,
H C Hunter, E R Altman, eds., Proceedings of the 46th International Symposium on Computer Architecture, ISCA 2019,
Phoenix, AZ, USA, June 22-26, 2019, 2019. 39-52

Wang D, Yan M, Teng Y, et al. A transfer learning framework for high-accurate cross-workload design space exploration of
cpu. In: 2023 IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2023

Xue R, Wu H, Yan M, et al. Metadse: A few-shot meta-learning framework for cross-workload cpu design space exploration.
In: DAC’25: 62nd ACM/IEEE Design Automation Conference, San Francisco, California, USA, July 22 - 25, 2025, 2025
Eyerman S, Eeckhout L, De Bosschere K. Efficient Design Space Exploration of High Performance Embedded Out-of-Order
Processors. In: Proceedings of the Design Automation & Test in Europe Conference, 2006, volume 1. 1-6

Mariani G, Palermo G, Silvano C, et al. Meta-model Assisted Optimization for Design Space Exploration of Multi-Processor
Systems-on-Chip. In: A Nunez, P P Carballo, eds., 12th Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, DSD 2009, 27-29 August 2009, Patras, Greece, 2009. 383-389

Mariani G, Palermo G, Silvano C, et al. Multi-processor system-on-chip Design Space Exploration based on multi-level
modeling techniques. In: W A Najjar, M J Schulte, eds., Proceedings of the 2009 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS 2009), Samos, Greece, July 20-23, 2009, 2009.
118-124

Mariani G, Palermo G, Zaccaria V, et al. Design-Space Exploration and Runtime Resource Management for Multicores. ACM
Trans. Embed. Comput. Syst., 2013, 13

Wang H, Zhu Z, Shi J, et al. An accurate ACOSSO metamodeling technique for processor architecture design space exploration.
In: The 20th Asia and South Pacific Design Automation Conference, 2015. 689-694

Zaccaria V, Palermo G, Castro F, et al. Multicube Explorer: An Open Source Framework for Design Space Exploration of
Chip Multi-Processors. In: M Beigl, F J Cazorla-Almeida, eds., ARCS 10 - 23th International Conference on Architecture of
Computing Systens 2010, Workshop Proceedings, February 22-23, 2010, Hannover, Germany, 2010. 325-331

Navada S, Choudhary N K, Rotenberg E. Criticality-driven superscalar design space exploration. In: Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques, 2010. 261-272

Mariani G, Palermo G, Silvano C, et al. An Efficient Design Space Exploration Methodology for Multi-Cluster VLIW


https://doi.org/10.1145/2024716.2024718
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2412.19437
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Sci China Inf Sci 32

Architectures based on Artificial Neural Networks. In: Proc. IFIP International Conference on Very Large Scale Integration
VLSI - SoC, 2008

Mariani G, Brankovic A, Palermo G, et al. A correlation-based design space exploration methodology for multi-processor
systems-on-chip. In: S S Sapatnekar, ed., Proceedings of the 47th Design Automation Conference, DAC 2010, Anaheim,
California, USA, July 13-18, 2010, 2010. 120-125

Mariani G, Palermo G, Zaccaria V, et al. OSCAR: An Optimization Methodology Exploiting Spatial Correlation in Multicore
Design Spaces. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2012, 31: 740-753

Mei L, Houshmand P, Jain V, et al. Zigzag: Enlarging joint architecture-mapping design space exploration for dnn accelerators.
IEEE Transactions on Computers, 2021, 70: 1160-1174

Hong C, Huang Q, Dinh G, et al. Dosa: Differentiable model-based one-loop search for dnn accelerators. In: Proceedings of
the 56th Annual IEEE/ACM International Symposium on Microarchitecture, 2023. 209-224

Cong J, Wang J. Polysa: Polyhedral-based systolic array auto-compilation. In: 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018. 1-8

Wang J, Guo L, Cong J. Autosa: A polyhedral compiler for high-performance systolic arrays on fpga. In: The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021. 93-104

Shao Y S, Reagen B, Wei G Y, et al. Aladdin: A pre-rtl, power-performance accelerator simulator enabling large design space
exploration of customized architectures. ACM SIGARCH Computer Architecture News, 2014, 42: 97-108

Blocklove J, Garg S, Karri R, et al. Chip-chat: Challenges and opportunities in conversational hardware design. In: 5th
ACM/IEEE Workshop on Machine Learning for CAD, MLCAD 2023, Snowbird, UT, USA, September 10-13, 2023, 2023. 1-6.
URL https://doi.org/10.1109/MLCAD58807.2023.10299874

Thakur S, Blocklove J, Pearce H, et al. Autochip: Automating HDL generation using LLM feedback. CoRR, 2023,
abs/2311.04887. URL https://doi.org/10.48550/arXiv.2311.04887

DeLorenzo M, Chowdhury A B, Gohil V, et al. Make every move count: Llm-based high-quality RTL code generation using
MCTS. CoRR, 2024, abs/2402.03289. URL https://doi.org/10.48550/arXiv.2402.03289

Cui F, Yin C, Zhou K, et al. Origen:enhancing RTL code generation with code-to-code augmentation and self-reflection.
CoRR, 2024, abs/2407.16237. URL https://doi.org/10.48550/arXiv.2407.16237

Thakur S, Ahmad B, Fan Z, et al. Benchmarking large language models for automated verilog RTL code generation. In:
Design, Automation & Test in Europe Conference & Exhibition, DATE 2023, Antwerp, Belgium, April 17-19, 2023, 2023.
1-6. URL https://doi.org/10.23919/DATE56975.2023.10137086

Liu M, Pinckney N R, Khailany B, et al. Verilogeval: Evaluating large language models for verilog code generation. In:
IEEE/ACM International Conference on Computer Aided Design, ICCAD 2023, San Francisco, CA, USA, October 28 - Nov.
2, 2023, 2023. 1-8. URL https://doi.org/10.1109/ICCAD57390.2023.10323812

Nadimi B, Zheng H. A multi-expert large language model architecture for verilog code generation. CoRR, 2024,
abs/2404.08029. URL https://doi.org/10.48550/arXiv.2404.08029

Zhao Y, Huang D, Li C, et al. Codev: Empowering llms for verilog generation through multi-level summarization. CoRR,
2024, abs/2407.10424. URL https://doi.org/10.48550/arXiv.2407.10424

Lu Y, Liu S, Zhang Q, et al. RTLLM: an open-source benchmark for design RTL generation with large language model.
In: Proceedings of the 29th Asia and South Pacific Design Automation Conference, ASPDAC 2024, Incheon, Korea, January
22-25, 2024, 2024. 722-727. URL https://doi.org/10.1109/ASP-DAC58780.2024.10473904

Wu P, Guo N, Xiao X, et al. ITERTL: an iterative framework for fine-tuning llms for RTL code generation. CoRR, 2024,
abs/2407.12022. URL https://doi.org/10.48550/arXiv.2407.12022

ul Islam M, Sami H, Gaillardon P, et al. Aivril: Ai-driven RTL generation with verification in-the-loop. CoRR, 2024,
abs/2409.11411. URL https://doi.org/10.48550/arXiv.2409.11411

Ho C, Ren H, Khailany B. Verilogcoder: Autonomous verilog coding agents with graph-based planning and abstract syntax
tree (ast)-based waveform tracing tool. In: T Walsh, J Shah, Z Kolter, eds., AAAI-25, Sponsored by the Association for
the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA, 2025. 300-307. URL
https://doi.org/10.1609/aaai.v39i1.32007

Zhao Y, Zhang H, Huang H, et al. MAGE: A multi-agent engine for automated RTL code generation. CoRR, 2024,
abs/2412.07822. URL https://doi.org/10.48550/arXiv.2412.07822

GitHub - mmt-at/diff-gaussian-rasterization: C Kernel — github.com. https://github.com/mmt-at/
diff-gaussian-rasterization


https://doi.org/10.1109/MLCAD58807.2023.10299874
https://doi.org/10.48550/arXiv.2311.04887
https://doi.org/10.48550/arXiv.2402.03289
https://doi.org/10.48550/arXiv.2407.16237
https://doi.org/10.23919/DATE56975.2023.10137086
https://doi.org/10.1109/ICCAD57390.2023.10323812
https://doi.org/10.48550/arXiv.2404.08029
https://doi.org/10.48550/arXiv.2407.10424
https://doi.org/10.1109/ASP-DAC58780.2024.10473904
https://doi.org/10.48550/arXiv.2407.12022
https://doi.org/10.48550/arXiv.2409.11411
https://doi.org/10.1609/aaai.v39i1.32007
https://doi.org/10.48550/arXiv.2412.07822
https://github.com/mmt-at/diff-gaussian-rasterization
https://github.com/mmt-at/diff-gaussian-rasterization

	Introduction
	The Evolution of Design Paradigms in Computer System Architecture
	The key challenges preventing the evolution of design paradigms
	Large language models bring new opportunities
	Towards next-generation paradigm: Large Processor Chip Model

	Compiler meets LLM
	Motivation
	The overview of LLM Compiler
	LLM as Compiler
	LLM generates Compiler


	Binary Translation meets LLM
	Motivation
	Overview of binary translation tool
	Development Stages and Related Work
	Proposed framework design


	Simulator meets LLM
	Motivation
	LLM-driven computer architecture simulator automation design framework

	HW/SW partition meets LLM
	Motivation
	Proposed framework design
	LLM-Driven Task Graph Generation
	Graph Learning Model-Based Task Graph Performance Prediction and Partitioning


	Design Space Exploration meets LLM
	Motivation
	The Overview of DSE Module
	Key Future Designs


	HDL generation module
	Motivation
	Overview of HDL Generation Module
	Development Stages
	Related work

	Proposed MLM-governed HDL module design

	Put Them All Together
	Gradual LLM Integration
	Case Study: 3D Gaussian Splatting
	Challenges and Future Planning
	Multi-modal Knowledge Integration and Transfer
	Verification and Trustworthiness of Autonomous Design Decisions
	Cross-Layer Optimization in Heterogeneous Design Spaces


	Conclusion

